Download Free Type Ii Blow Up Solutions With Optimal Stability Properties For The Critical Focussing Nonlinear Wave Equation On Mathbb R3 1 Book in PDF and EPUB Free Download. You can read online Type Ii Blow Up Solutions With Optimal Stability Properties For The Critical Focussing Nonlinear Wave Equation On Mathbb R3 1 and write the review.

The author shows that the finite time type II blow up solutions for the energy critical nonlinear wave equation $ Box u = -u^5 $ on $mathbb R^3+1$ constructed in Krieger, Schlag, and Tataru (2009) and Krieger and Schlag (2014) are stable along a co-dimension three manifold of radial data perturbations in a suitable topology, provided the scaling parameter $lambda (t) = t^-1-nu $ is sufficiently close to the self-similar rate, i. e. $nu >0$ is sufficiently small. Our method is based on Fourier techniques adapted to time dependent wave operators of the form $ -partial _t^2 + partial _r^2 + frac 2rpartial _r +V(lambda (t)r) $ for suitable monotone scaling parameters $lambda (t)$ and potentials $V(r)$ with a resonance at zero.
The monograph is devoted to the study of initial-boundary-value problems for multi-dimensional Sobolev-type equations over bounded domains. The authors consider both specific initial-boundary-value problems and abstract Cauchy problems for first-order (in the time variable) differential equations with nonlinear operator coefficients with respect to spatial variables. The main aim of the monograph is to obtain sufficient conditions for global (in time) solvability, to obtain sufficient conditions for blow-up of solutions at finite time, and to derive upper and lower estimates for the blow-up time. The abstract results apply to a large variety of problems. Thus, the well-known Benjamin-Bona-Mahony-Burgers equation and Rosenau-Burgers equations with sources and many other physical problems are considered as examples. Moreover, the method proposed for studying blow-up phenomena for nonlinear Sobolev-type equations is applied to equations which play an important role in physics. For instance, several examples describe different electrical breakdown mechanisms in crystal semiconductors, as well as the breakdown in the presence of sources of free charges in a self-consistent electric field. The monograph contains a vast list of references (440 items) and gives an overall view of the contemporary state-of-the-art of the mathematical modeling of various important problems arising in physics. Since the list of references contains many papers which have been published previously only in Russian research journals, it may also serve as a guide to the Russian literature.
View the abstract.
Based on a one-year course taught by the author to graduates at the University of Missouri, this book provides a student-friendly account of some of the standard topics encountered in an introductory course of ordinary differential equations. In a second semester, these ideas can be expanded by introducing more advanced concepts and applications. A central theme in the book is the use of Implicit Function Theorem, while the latter sections of the book introduce the basic ideas of perturbation theory as applications of this Theorem. The book also contains material differing from standard treatments, for example, the Fiber Contraction Principle is used to prove the smoothness of functions that are obtained as fixed points of contractions. The ideas introduced in this section can be extended to infinite dimensions.
Aims to show graduate students and researchers the vital benefits of integrating mathematics into their study and experience of the physical world. This book details numerous topics from the frontiers of modern physics and mathematics such as convergence, Green functions, complex analysis, Fourier series and Fourier transform, tensors, and others.
The chapters in this contributed volume showcase current theoretical approaches in the modeling of ocular fluid dynamics in health and disease. By including chapters written by experts from a variety of fields, this volume will help foster a genuinely collaborative spirit between clinical and research scientists. It vividly illustrates the advantages of clinical and experimental methods, data-driven modeling, and physically-based modeling, while also detailing the limitations of each approach. Blood, aqueous humor, vitreous humor, tear film, and cerebrospinal fluid each have a section dedicated to their anatomy and physiology, pathological conditions, imaging techniques, and mathematical modeling. Because each fluid receives a thorough analysis from experts in their respective fields, this volume stands out among the existing ophthalmology literature. Ocular Fluid Dynamics is ideal for current and future graduate students in applied mathematics and ophthalmology who wish to explore the field by investigating open questions, experimental technologies, and mathematical models. It will also be a valuable resource for researchers in mathematics, engineering, physics, computer science, chemistry, ophthalmology, and more.