Download Free Type Driven Development With Idris Book in PDF and EPUB Free Download. You can read online Type Driven Development With Idris and write the review.

Summary Type-Driven Development with Idris, written by the creator of Idris, teaches you how to improve the performance and accuracy of your programs by taking advantage of a state-of-the-art type system. This book teaches you with Idris, a language designed to support type-driven development. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Technology Stop fighting type errors! Type-driven development is an approach to coding that embraces types as the foundation of your code - essentially as built-in documentation your compiler can use to check data relationships and other assumptions. With this approach, you can define specifications early in development and write code that's easy to maintain, test, and extend. Idris is a Haskell-like language with first-class, dependent types that's perfect for learning type-driven programming techniques you can apply in any codebase. About the Book Type-Driven Development with Idris teaches you how to improve the performance and accuracy of your code by taking advantage of a state-of-the-art type system. In this book, you'll learn type-driven development of real-world software, as well as how to handle side effects, interaction, state, and concurrency. By the end, you'll be able to develop robust and verified software in Idris and apply type-driven development methods to other languages. What's Inside Understanding dependent types Types as first-class language constructs Types as a guide to program construction Expressing relationships between data About the Reader Written for programmers with knowledge of functional programming concepts. About the Author Edwin Brady leads the design and implementation of the Idris language. Table of Contents PART 1 - INTRODUCTION Overview Getting started with IdrisPART 2 - CORE IDRIS Interactive development with types User-defined data types Interactive programs: input and output processing Programming with first-class types Interfaces: using constrained generic types Equality: expressing relationships between data Predicates: expressing assumptions and contracts in types Views: extending pattern matching PART 3 - IDRIS AND THE REAL WORLD Streams and processes: working with infinite data Writing programs with state State machines: verifying protocols in types Dependent state machines: handling feedback and errors Type-safe concurrent programming
Summary Type-Driven Development with Idris, written by the creator of Idris, teaches you how to improve the performance and accuracy of your programs by taking advantage of a state-of-the-art type system. This book teaches you with Idris, a language designed to support type-driven development. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Technology Stop fighting type errors! Type-driven development is an approach to coding that embraces types as the foundation of your code - essentially as built-in documentation your compiler can use to check data relationships and other assumptions. With this approach, you can define specifications early in development and write code that's easy to maintain, test, and extend. Idris is a Haskell-like language with first-class, dependent types that's perfect for learning type-driven programming techniques you can apply in any codebase. About the Book Type-Driven Development with Idris teaches you how to improve the performance and accuracy of your code by taking advantage of a state-of-the-art type system. In this book, you'll learn type-driven development of real-world software, as well as how to handle side effects, interaction, state, and concurrency. By the end, you'll be able to develop robust and verified software in Idris and apply type-driven development methods to other languages. What's Inside Understanding dependent types Types as first-class language constructs Types as a guide to program construction Expressing relationships between data About the Reader Written for programmers with knowledge of functional programming concepts. About the Author Edwin Brady leads the design and implementation of the Idris language. Table of Contents PART 1 - INTRODUCTION Overview Getting started with IdrisPART 2 - CORE IDRIS Interactive development with types User-defined data types Interactive programs: input and output processing Programming with first-class types Interfaces: using constrained generic types Equality: expressing relationships between data Predicates: expressing assumptions and contracts in types Views: extending pattern matching PART 3 - IDRIS AND THE REAL WORLD Streams and processes: working with infinite data Writing programs with state State machines: verifying protocols in types Dependent state machines: handling feedback and errors Type-safe concurrent programming
An introduction to dependent types, demonstrating the most beautiful aspects, one step at a time. A program's type describes its behavior. Dependent types are a first-class part of a language, and are much more powerful than other kinds of types; using just one language for types and programs allows program descriptions to be as powerful as the programs they describe. The Little Typer explains dependent types, beginning with a very small language that looks very much like Scheme and extending it to cover both programming with dependent types and using dependent types for mathematical reasoning. Readers should be familiar with the basics of a Lisp-like programming language, as presented in the first four chapters of The Little Schemer. The first five chapters of The Little Typer provide the needed tools to understand dependent types; the remaining chapters use these tools to build a bridge between mathematics and programming. Readers will learn that tools they know from programming—pairs, lists, functions, and recursion—can also capture patterns of reasoning. The Little Typer does not attempt to teach either practical programming skills or a fully rigorous approach to types. Instead, it demonstrates the most beautiful aspects as simply as possible, one step at a time.
A handbook to the Coq software for writing and checking mathematical proofs, with a practical engineering focus. The technology of mechanized program verification can play a supporting role in many kinds of research projects in computer science, and related tools for formal proof-checking are seeing increasing adoption in mathematics and engineering. This book provides an introduction to the Coq software for writing and checking mathematical proofs. It takes a practical engineering focus throughout, emphasizing techniques that will help users to build, understand, and maintain large Coq developments and minimize the cost of code change over time. Two topics, rarely discussed elsewhere, are covered in detail: effective dependently typed programming (making productive use of a feature at the heart of the Coq system) and construction of domain-specific proof tactics. Almost every subject covered is also relevant to interactive computer theorem proving in general, not just program verification, demonstrated through examples of verified programs applied in many different sorts of formalizations. The book develops a unique automated proof style and applies it throughout; even experienced Coq users may benefit from reading about basic Coq concepts from this novel perspective. The book also offers a library of tactics, or programs that find proofs, designed for use with examples in the book. Readers will acquire the necessary skills to reimplement these tactics in other settings by the end of the book. All of the code appearing in the book is freely available online.
Ideal for learning or reference, this book explains the five main principles of algorithm design and their implementation in Haskell.
Now in its third edition, this highly successful textbook is widely regarded as the 'bible of computer algebra'.
This course provides a first introduction to the Curry-Howard correspondence between programs and proofs, from a theoretical programmer's perspective: we want to understand the theory behind logic and programming languages, but also to write concrete programs (in OCaml) and proofs (in Agda). After an introduction to functional programming languages, we present propositional logic, λ-calculus, the Curry-Howard correspondence, first-order logic, Agda, dependent types and homotopy type theory.
Summary Get Programming with Haskell leads you through short lessons, examples, and exercises designed to make Haskell your own. It has crystal-clear illustrations and guided practice. You will write and test dozens of interesting programs and dive into custom Haskell modules. You will gain a new perspective on programming plus the practical ability to use Haskell in the everyday world. (The 80 IQ points: not guaranteed.) Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Technology Programming languages often differ only around the edges—a few keywords, libraries, or platform choices. Haskell gives you an entirely new point of view. To the software pioneer Alan Kay, a change in perspective can be worth 80 IQ points and Haskellers agree on the dramatic benefits of thinking the Haskell way—thinking functionally, with type safety, mathematical certainty, and more. In this hands-on book, that's exactly what you'll learn to do. What's Inside Thinking in Haskell Functional programming basics Programming in types Real-world applications for Haskell About the Reader Written for readers who know one or more programming languages. Table of Contents Lesson 1 Getting started with Haskell Unit 1 - FOUNDATIONS OF FUNCTIONAL PROGRAMMING Lesson 2 Functions and functional programming Lesson 3 Lambda functions and lexical scope Lesson 4 First-class functions Lesson 5 Closures and partial application Lesson 6 Lists Lesson 7 Rules for recursion and pattern matching Lesson 8 Writing recursive functions Lesson 9 Higher-order functions Lesson 10 Capstone: Functional object-oriented programming with robots! Unit 2 - INTRODUCING TYPES Lesson 11 Type basics Lesson 12 Creating your own types Lesson 13 Type classes Lesson 14 Using type classes Lesson 15 Capstone: Secret messages! Unit 3 - PROGRAMMING IN TYPES Lesson 16 Creating types with "and" and "or" Lesson 17 Design by composition—Semigroups and Monoids Lesson 18 Parameterized types Lesson 19 The Maybe type: dealing with missing values Lesson 20 Capstone: Time series Unit 4 - IO IN HASKELL Lesson 21 Hello World!—introducing IO types Lesson 22 Interacting with the command line and lazy I/O Lesson 23 Working with text and Unicode Lesson 24 Working with files Lesson 25 Working with binary data Lesson 26 Capstone: Processing binary files and book data Unit 5 - WORKING WITH TYPE IN A CONTEXT Lesson 27 The Functor type class Lesson 28 A peek at the Applicative type class: using functions in a context Lesson 29 Lists as context: a deeper look at the Applicative type class Lesson 30 Introducing the Monad type class Lesson 31 Making Monads easier with donotation Lesson 32 The list monad and list comprehensions Lesson 33 Capstone: SQL-like queries in Haskell Unit 6 - ORGANIZING CODE AND BUILDING PROJECTS Lesson 34 Organizing Haskell code with modules Lesson 35 Building projects with stack Lesson 36 Property testing with QuickCheck Lesson 37 Capstone: Building a prime-number library Unit 7 - PRACTICAL HASKELL Lesson 38 Errors in Haskell and the Either type Lesson 39 Making HTTP requests in Haskell Lesson 40 Working with JSON data by using Aeson Lesson 41 Using databases in Haskell Lesson 42 Efficient, stateful arrays in Haskell Afterword - What's next? Appendix - Sample answers to exercise
When you write software, you need to be at the top of your game. Great programmers practice to keep their skills sharp. Get sharp and stay sharp with more than fifty practice exercises rooted in real-world scenarios. If you're a new programmer, these challenges will help you learn what you need to break into the field, and if you're a seasoned pro, you can use these exercises to learn that hot new language for your next gig. One of the best ways to learn a programming language is to use it to solve problems. That's what this book is all about. Instead of questions rooted in theory, this book presents problems you'll encounter in everyday software development. These problems are designed for people learning their first programming language, and they also provide a learning path for experienced developers to learn a new language quickly. Start with simple input and output programs. Do some currency conversion and figure out how many months it takes to pay off a credit card. Calculate blood alcohol content and determine if it's safe to drive. Replace words in files and filter records, and use web services to display the weather, store data, and show how many people are in space right now. At the end you'll tackle a few larger programs that will help you bring everything together. Each problem includes constraints and challenges to push you further, but it's up to you to come up with the solutions. And next year, when you want to learn a new programming language or style of programming (perhaps OOP vs. functional), you can work through this book again, using new approaches to solve familiar problems. What You Need: You need access to a computer, a programming language reference, and the programming language you want to use.
Property-based testing helps you create better, more solid tests with little code. By using the PropEr framework in both Erlang and Elixir, this book teaches you how to automatically generate test cases, test stateful programs, and change how you design your software for more principled and reliable approaches. You will be able to better explore the problem space, validate the assumptions you make when coming up with program behavior, and expose unexpected weaknesses in your design. PropEr will even show you how to reproduce the bugs it found. With this book, you will be writing efficient property-based tests in no time. Most tests only demonstrate that the code behaves how the developer expected it to behave, and therefore carry the same blind spots as their authors when special conditions or edge cases show up. Learn how to see things differently with property tests written in PropEr. Start with the basics of property tests, such as writing stateless properties, and using the default generators to generate test cases automatically. More importantly, learn how to think in properties. Improve your properties, write custom data generators, and discover what your code can or cannot do. Learn when to use property tests and when to stick with example tests with real-world sample projects. Explore various testing approaches to find the one that's best for your code. Shrink failing test cases to their simpler expression to highlight exactly what breaks in your code, and generate highly relevant data through targeted properties. Uncover the trickiest bugs you can think of with nearly no code at all with two special types of properties based on state transitions and finite state machines. Write Erlang and Elixir properties that generate the most effective tests you'll see, whether they are unit tests or complex integration and system tests. What You Need Basic knowledge of Erlang, optionally ElixirFor Erlang tests: Erlang/OTP >= 20.0, with Rebar >= 3.4.0For Elixir tests: Erlang/OTP >= 20.0, Elixir >= 1.5.0