Download Free Two Phase Flow Book in PDF and EPUB Free Download. You can read online Two Phase Flow and write the review.

This book has been written for graduate students, scientists and engineers who need in-depth theoretical foundations to solve two-phase problems in various technological systems. Based on extensive research experiences focused on the fundamental physics of two-phase flow, the authors present the detailed theoretical foundation of multi-phase flow thermo-fluid dynamics as they apply to a variety of scenarios, including nuclear reactor transient and accident analysis, energy systems, power generation systems and even space propulsion.
This graduate text provides a unified treatment of the fundamental principles of two-phase flow and shows how to apply the principles to a variety of homogeneous mixture as well as separated liquid-liquid, gas-solid, liquid-solid, and gas-liquid flow problems, which may be steady or transient, laminar or turbulent.Each chapter contains several sample problems, which illustrate the outlined theory and provide approaches to find simplified analytic descriptions of complex two-phase flow phenomena.This well-balanced introductory text will be suitable for advanced seniors and graduate students in mechanical, chemical, biomedical, nuclear, environmental and aerospace engineering, as well as in applied mathematics and the physical sciences. It will be a valuable reference for practicing engineers and scientists. A solutions manual is available to qualified instructors.
This book is an undertaking of a pioneering work of uniting three vast fields of interfacial phenomena, rheology and fluid mechanics within the framework of solid-liquid two phase flow. No wonder, much finer books will be written in the future as the visionary aims of many nations in combining molecular chemistry, biology, transport and interfacial phenomena for the fundamental understanding of processes and capabilities of new materials will be achieved. Solid-liquid systems where solid particles with a wide range of physical properties, sizes ranging from nano- to macro- scale and concentrations varying from very dilute to highly concentrated, are suspended in liquids of different rheological behavior flowing in various regimes are taken up in this book. Interactions among solid particles in molecular scale are extended to aggregations in the macro scale and related to settling, flow and rheological behavior of the suspensions in a coherent, sequential manner. The classical concept of solid particles is extended to include nanoparticles, colloids, microorganisms and cellular materials. The flow of these systems is investigated under pressure, electrical, magnetic and chemical driving forces in channels ranging from macro-scale pipes to micro channels. Complementary separation and mixing processes are also taken under consideration with micro- and macro-scale counterparts. - Up-to-date including emerging technologies- Coherent, sequential approach- Wide scope: microorganisms, nanoparticles, polymer solutions, minerals, wastewater sludge, etc- All flow conditions, settling and non-settling particles, non-Newtonian flow, etc- Processes accompanying conveying in channels, such as sedimentation, separation, mixing
Annular Two-Phase Flow presents the wide range of industrial applications of annular two-phase flow regimes. This book discusses the fluid dynamics and heat transfer aspects of the flow pattern. Organized into 12 chapters, this book begins with an overview of the classification of the various types of interface distribution observed in practice. This text then examines the various regimes of two-phase flow with emphasis on the regions of occurrence of the annular flow regime. Other chapters consider the single momentum and energy balances, which illustrate the differences and analogies between single- and two-phase flows. This book discusses as well the simple modes for annular flow with consideration to the calculation of the profile of shear stress in the liquid film. The final chapter deals with the techniques that are developed for the measurement of flow pattern, entrainment, and film thickness. This book is a valuable resource for chemical engineers.
This graduate text provides a unified treatment of the fundamental principles of two-phase flow and shows how to apply the principles to a variety of homogeneous mixture as well as separated liquid-liquid, gas-solid, liquid-solid, and gas-liquid flow problems, which may be steady or transient, laminar or turbulent.Each chapter contains several sample problems, which illustrate the outlined theory and provide approaches to find simplified analytic descriptions of complex two-phase flow phenomena.This well-balanced introductory text will be suitable for advanced seniors and graduate students in mechanical, chemical, biomedical, nuclear, environmental and aerospace engineering, as well as in applied mathematics and the physical sciences. It will be a valuable reference for practicing engineers and scientists. A solutions manual is available to qualified instructors.
This book provides design engineers using gas-liquid two-phase flow in different industrial applications the necessary fundamental understanding of the two-phase flow variables. Two-phase flow literature reports a plethora of correlations for determination of flow patterns, void fraction, two- phase pressure drop and non-boiling heat transfer correlations. However, the validity of a majority of these correlations is restricted over a narrow range of two -phase flow conditions. Consequently, it is quite a challenging task for the end user to select an appropriate correlation/model for the type of two-phase flow under consideration. Selection of a correct correlation also requires some fundamental understanding of the two-phase flow physics and the underlying principles/assumptions/limitations associated with these correlations. Thus, it is of significant interest for a design engineer to have knowledge of the flow patterns and their transitions and their influence on two-phase flow variables. To address some of these issues and facilitate selection of appropriate two-phase flow models, this volume presents a succinct review of the flow patterns, void fraction, pressure drop and non-boiling heat transfer phenomenon and recommend some of the well scrutinized modeling techniques.
Mehrphasige Strömungen spielen in etlichen Industriezweigen, besonders der Luft- und Raumfahrt und der Energieerzeugung, eine zentrale Rolle. Derart komplexe Strömungsvorgänge sind extrem schwer vorauszuberechnen, zu analysieren und zu testen. Wertvolle Hilfestellungen, die für reale technische Situationen gedacht sind, gibt dieser Band, der auch Quelltexte einschlägiger Computerprogramme enthält. (07/99)
This book describes mathematical formulations and computational methods for solving two-phase flow problems with a computer code that calculates thermal hydraulic problems related to light water and fast breeder reactors. The physical model also handles the particle and gas flow problems that arise from coal gasification and fluidized beds. The second part of this book deals with the computational methods for particle transport.
This is an up-to-date review of recent advances in the study of two-phase flows, with focus on gas-liquid flows, liquid-liquid flows, and particle transport in turbulent flows. The book is divided into several chapters, which after introducing basic concepts lead the reader through a more complex treatment of the subjects. The reader will find an extensive review of both the older and the more recent literature, with abundance of formulas, correlations, graphs and tables. A comprehensive (though non exhaustive) list of bibliographic references is provided at the end of each chapter. The volume is especially indicated for researchers who would like to carry out experimental, theoretical or computational work on two-phase flows, as well as for professionals who wish to learn more about this topic.