Download Free Two Particle Correlations In Ultra Relativistic Heavy Ion Collisions Book in PDF and EPUB Free Download. You can read online Two Particle Correlations In Ultra Relativistic Heavy Ion Collisions and write the review.

Not Available.
Quantum Chromodynamics calculations on the lattice predict that at extremely high energy densities, colliding nuclear matter would undergo a phase transition to deconfined matter of quarks and gluons. The nature of transition, the temperature and the energy density at which the transition occurs depend upon the details of calculations; these depend upon the number of quark flavors introduced in the calculation. This deconfined state of quark and gluons has been named Quark Gluon Plasma(QGP). This work purports to understand the azimuthal distribution of photons produced in Cu+Cu collisions at 200 GeV with Photon Multiplicity Detector (PMD). The PMD is part of the STAR (Solenoidal Tracker At RHIC) experiment.PMD covers a pseudorapidity range of -3.7 to -2.3 with full azimuthal coverage and measures the multiplicity and spatial distribution of photons on an event-by-event basis.The value of second order azimuthal coefficient has been determined for different centralities in different pseudorapidity windows and its pseudorapidity and centrality dependence has been obtained.
We introduce the coalescence variables, a set of three boost-invariant kinematic quantities which may be used in analyzing n-particle correlations. These variables characterize the invariant mass of an n-particle and in three directions and separate the timelike and spacelike characteristics of the source. The analytic Kolehmanien-Gyulassy model is generalized to give two, three, and four-particle correlation functions, with coherence and Coulomb corrections applied to the basic formalism. We demonstrate the relation of the coalescence variables to be radius and duration of the source, and find that for sufficiently large transverse radii, Coulomb effects can suppress the structure of the Hanbury-Brown-Twiss correlations so that no significant information on source size can be obtained. 11 refs., 10 figs.
An introduction to the main ideas used in the physics of ultra-realistic heavy-ion collisions, this book covers topics such as hot and dense matter and the formation of the quark-gluon plasma in present and future heavy-ion experiments
Annotation. Text reviews the major topics in Quark-Gluon Plasma, including: the QCD phase diagram, the transition temperature, equation of state, heavy quark free energies, and thermal modifications of hadron properties. Includes index, references, and appendix. For researchers and practitioners.
Results on the centrality dependence of two-particle correlations in Au+Au collisions at ... 200GeV are presented. A particular focus is devoted to investigating any anomalous behavior in the centrality dependence of correlation functions, as previous results suggest existence of such tendencies around Npart [approx.] 50. Correlation functions are calculated for a wide kinematic region of ... from data obtained by the PHOBOS experiment at RHIC. The RHIC layout and the PHOBOS detector setup is discussed. Data acquisition method employed by the PHOBOS experiment, data processing procedures and event selection criteria are presented. The two-particle correlation function is defined and calculation procedures are described. Decomposition analysis is explained as the fit function and the constituting components are introduced. Analysis results for correlation functions and fits are presented. The results suggest that in the kinematic region covered by the analysis of this thesis, no anomalous trends in component behavior exists.
Measurements at the Relativistic Heavy Ion Collider (RHIC) have provided indirect measurements of jets in a heavy ion environment using the two- particle correlation method in the presence of a high-pT particle. These measurements have offered insight into the formation of a new state of dense nuclear matter called the Quark-Gluon Plasma (QGP) through the observation of jet quenching. However, the two-particle methodology has also shown to be biased towards di-jet production near the surface of the medium being created. Here, a detailed study using the PHENIX detector is provided, in an attempt to measure a more accurate jet-induced two-particle correlation measurement than previously published and to reduce the bias observed in two-particle correlation measurements. The reduction in surface bias emission is performed via the requirement of two antipodal high-pT particles (a.k.a. "2+1" correlation) in an attempt to control the production point of the di-jet. The measurements made in Au+Au collisions when compared to p+p collisions show that the method provides additional sensitivity to the jet quenching previously observed in two-particle correlation method.
This book attempts to cover the fascinating field of physics of relativistic heavy ions, mainly from the experimentalist's point of view. After the introductory chapter on quantum chromodynamics, basic properties of atomic nuclei, sources of relativistic nuclei, and typical detector set-ups are described in three subsequent chapters. Experimental facts on collisions of relativistic heavy ions are systematically presented in 15 consecutive chapters, starting from the simplest features like cross sections, multiplicities, and spectra of secondary particles and going to more involved characteristics like correlations, various relatively rare processes, and newly discovered features: collective flow, high pT suppression and jet quenching. Some entirely new topics are included, such as the difference between neutron and proton radii in nuclei, heavy hypernuclei, and electromagnetic effects on secondary particle spectra.Phenomenological approaches and related simple models are discussed in parallel with the presentation of experimental data. Near the end of the book, recent ideas about the new state of matter created in collisions of ultrarelativistic nuclei are discussed. In the final chapter, some predictions are given for nuclear collisions in the Large Hadron Collider (LHC), now in construction at the site of the European Organization for Nuclear Research (CERN), Geneva. Finally, the appendix gives us basic notions of relativistic kinematics, and lists the main international conferences related to this field. A concise reference book on physics of relativistic heavy ions, it shows the present status of this field.
In the course of this project the Ohio State University group led by the PI, Professor Ulrich Heinz, developed a comprehensive theoretical picture of the dynamical evolution of ultra-relativistic heavy-ion collisions and of the numerous experimental observables that can be used to diagnose the evolving and short-lived hot and dense fireball created in such collisions. Starting from a qualitative understanding of the main features based on earlier research during the last decade of the twentieth century on collisions at lower energies, the group exploited newly developed theoretical tools and the stream of new high-quality data from the Relativistic Heavy Ion Collider at Brookhaven National Laboratory (which started operations in the summer of the year 2000) to arrive at an increasingly quantitative description of the experimentally observed phenomena. Work done at Ohio State University (OSU) was instrumental in the discovery during the years 2001-2003 that quark-gluon plasma (QGP) created in nuclear collisions at RHIC behaves like an almost perfect liquid with minimal viscosity. The tool of relativistic fluid dynamics for viscous liquids developed at OSU in the years 2005-2007 opened the possibility to quantitatively determine the value of the QGP viscosity empirically from experimental measurements of the collective flow patterns established in the collisions. A first quantitative extraction of the QGP shear viscosity, with controlled theoretical uncertainty estimates, was achieved during the last year of this project in 2010. OSU has paved the way for a transition of the field of relativistic heavy-ion physics from a qualitative discovery stage to a new stage of quantitative precision in the description of quark-gluon plasma properties. To gain confidence in the precision of our theoretical understanding of quark-gluon plasma dynamics, one must test it on a large set of experimentally measured observables. This achievement report demonstrates that we have, at different times, systematically investigated both so-called ``soft" and ``hard, penetrating" probes of the fireball medium: hadron yields and momentum spectra and their anisotropies, two-particle momentum correlations, high-energy partons fragmenting into jets, heavy quarks and heavy-flavor mesons, and electromagnetic probes (photons and dileptons). Our strongest emphasis, and our most significant achievements, has, however, always remained on understanding the bulk behavior of the heavy-ion fireball medium, for which soft probes provide the most abundantly available data and thus the most stringent constraints.