Download Free Two Dimensional Inorganic Nanomaterials For Conductive Polymer Nanocomposites Book in PDF and EPUB Free Download. You can read online Two Dimensional Inorganic Nanomaterials For Conductive Polymer Nanocomposites and write the review.

Functional, flexible and lightweight products are in high demand for modern technologies ranging from microelectronics to energy storage devices. The majority of polymers are thermal and electrical insulators, which hinder their use in these applications. The conductivity of polymers can be significantly enhanced by the incorporation of conducting inorganic nanoparticles. However, this relies not only on the structure and function of the inorganic particles, but is highly determined by the morphology and dispersion of the nanoparticles, interfacial interactions and fabrication technologies of the composites. This book highlights the synthesis, chemistry and applications of two-dimensional (2D) inorganic nanoplatelets in polymer nanocomposites. Chapters cover technical challenges, such as surface functionalisation, compatibilization, interfacial interaction, dispersion, and manufacturing technologies of the polymer nanocomposites. The book also discusses the applications of these polymer nanocomposites in electronics and energy storage. With contributions from global experts, the book provides a much-needed overview of the field, giving advanced undergraduates, postgraduates and other researchers with a convenient introduction to the topic.
Two-Dimensional Nanomaterials-Based Polymer Nanocomposites This book presents an extensive discussion on fundamental chemistry, classifications, structure, unique properties, and applications of various 2D nanomaterials. The advent of graphene in 2004 has brought tremendous attention to two-dimensional (2D) nanomaterials. Lately, this has prompted researchers to explore new 2D nanomaterials for cutting-edge research in diverse fields. Polymer nanocomposites (PNCs) represent a fascinating group of novel materials that exhibit intriguing properties. The unique combination of polymer and nanomaterial not only overcomes the limitations of polymer matrices, but also changes their structural, morphological, and physicochemical properties thereby broadening their application potential. The book, comprising 22 chapters, provides a unique and detailed study of the process involved in the synthesis of 2D nanomaterials, modification strategies of 2D nanomaterials, and numerous applications of 2D nanomaterials-based polymer nanocomposites. The book also emphasizes the existing challenges in the functionalization and exfoliation of 2D nanomaterials as well as the chemical, structural, electrical, thermal, mechanical, and biological properties of 2D nanomaterials-based polymer nanocomposites. The key features of this book are: Provides fundamental information and a clear understanding of synthesis, processing methods, structure and physicochemical properties of 2D materials-based polymer nanocomposites; Presents a comprehensive review of several recent accomplishments and key scientific and technological challenges in developing 2D materials-based polymer nanocomposites; Explores various processing and fabrication methods and emerging applications of 2D materials-based polymer nanocomposites. Audience Engineers and polymer scientists in the electrical, coatings, and biomedical industries will find this book very useful. Advanced students in materials science and polymer science will find it a fount of information.
Conducting Polymer-Based Nanocomposites: Fundamentals and Applications delivers an up-to-date overview on cutting-edge advancements in the field of nanocomposites derived from conjugated polymeric matrices. Design of conducting polymers and resultant nanocomposites has instigated significant addition in the field of modern nanoscience and technology. Recently, conducting polymer-based nanocomposites have attracted considerable academic and industrial research interest. The conductivity and physical properties of conjugated polymers have shown dramatic improvement with nanofiller addition. Appropriate fabrication strategies and the choice of a nanoreinforcement, along with a conducting matrix, may lead to enhanced physicochemical features and material performance. Substantial electrical conductivity, optical features, thermal stability, thermal conductivity, mechanical strength, and other physical properties of the conducting polymer-based nanocomposites have led to high-performance materials and high-tech devices and applications. This book begins with a widespread impression of state-of-the-art knowledge in indispensable features and processing of conducting polymer-based nanocomposites. It then discusses essential categories of conducting polymer-based nanocomposites such as polyaniline, polypyrrole, polythiophene, and derived nanomaterials. Subsequent sections of this book are related to the potential impact of conducting polymer-based nanocomposites in various technical fields. Significant application areas have been identified for anti-corrosion, EMI shielding, sensing, and energy device relevance. Finally, the book covers predictable challenges and future opportunities in the field of conjugated nanocomposites. Integrates the fundamentals of conducting polymers and a range of multifunctional applications Describes categories of essential conducting polymer-based nanocomposites for polyaniline, polypyrrole, polythiophene, and derivative materials Assimilates the significance of multifunctional nanostructured materials of nanocomposite nanofibers Portrays current and future demanding technological applications of conjugated polymer-based nanocomposites, including anti-corrosion coatings, EMI shielding, sensors, and energy production and storage devices
This book provides much-needed reviews of fast-developing areas of 2D-related photo(electro)catalytic materials.
Flexible metal–organic frameworks (MOFs) are a unique class of porous materials that feature stimuli-responsive flexible structures and dynamic structural transformation behaviours. Exhibiting structural changes in response to physical or chemical stimuli creates related functions that can be developed for practical applications. The specific components and architectures of flexible MOFs are key to their unique properties, so understanding their chemistry is of critical importance for more targeted construction and functional research. This book provides an accessible overview of the historical background of the chemistry of flexible MOFs and their features; in particular, design and synthesis, dynamic structure analysis, flexibility, function and theoretical treatment, and interpretation of the mechanisms as well as their applications. It gives readers a fundamental understanding of this chemistry and will be of great help to young researchers, as well as those already familiar with conventional porous materials in creating new materials.
In the first book dedicated to this rapidly expanding research area, Mechanical Behaviour of Metal-Organic Framework Materials, provides a convenient introduction to how chemistry determines structure-mechanical property relationships and functional performance. Much of the research efforts in metal-organic framework (MOF) and hybrid framework materials focus on synthesis and adsorption related properties. But practical applications of MOFs require a precise understanding of mechanical properties and knowledge of structure-property relationships, to ensure robustness in device manufacturing and mechanical resilience for long-term performance. Readers will learn through key experimental and theoretical techniques for studying MOF mechanical properties including elastic and plastic behaviour, framework dynamics, high-pressure response, rate effects, anomalous mechanical behaviour and failure mechanisms. Edited by a pioneer of the field and with contributions by leading researchers developing the new science of “MOF Mechanics”, this book is suitable for both students and researchers who are new to the field.
Two-dimensional materials have had widespread applications in nanoelectronics, catalysis, gas capture, water purification, energy storage and conversion. Initially based around graphene, research has since moved on to looking at alternatives, including transitions metal dichalcogenides, layered topological insulators, metallic mono-chalcogenides, borocarbonitrides and phosphorene.This book provides a review of research in the field of these materials, including investigation into their defects, analysis on hybrid structures focusing on their properties and synthesis, and characterization and applications of 2D materials beyond graphene. It is designed to be a single-point reference for students, teachers and researchers of chemistry and its related subjects, particularly in the field of nanomaterials.
Computer Simulation of Porous Materials covers the key approaches in the modelling of porous materials, with a focus on how these can be used for structure prediction and to either rationalise or predict a range of properties including sorption, diffusion, mechanical, spectroscopic and catalytic. The book covers the full breadth of (micro)porous materials, from inorganic (zeolites), to organic including porous polymers and porous molecular materials, and hybrid materials (metal-organic frameworks). Through chapters focusing on techniques for specific types of applications and properties, the book outlines the challenges and opportunities in applying approaches and methods to different classes of systems, including a discussion of high-throughput screening. There is a strong forward-looking focus, to identify where increased computer power or artificial intelligence techniques such as machine learning have the potential to open up new avenues of research. Edited by a world leader in the field, this title provides a valuable resource for not only computational researchers, but also gives an overview for experimental researchers. It is presented at a level accessible to advanced undergraduates, postgraduates and researchers wishing to learn more about the topic.
This book provides an overview of the latest scientific developments and technological advances in two-dimensional (2D) nanomaterials for fire-safe polymers. It summarizes the preparation methods for diverse types of 2D nanomaterials and their polymer composites and reviews their flame-retardant properties, toxic gas and smoke emission during combustion, and inhibition strategies. Covers fundamental aspects like influence of size and dispersion of 2D nanomaterials to help readers develop efficient, multi-functional, and ecofriendly fire-safe polymer composites for a wide range of applications Discusses new-emerging 2D nanomaterials for fire-safe polymer applications, including MXenes, graphitic carbon nitride, boron nitride, and black phosphorus Introduces basic modes of flame retardant action of 2D nanomaterials, including smoke and toxic gas suppression, and the role of 2D nanomaterials in promoting char formation This book is suitable for both scholars and engineers in the fields of polymer science and engineering. It is also aimed at graduate students in chemistry, materials, and safety science and engineering.