Download Free Two Dimensional Carbon Book in PDF and EPUB Free Download. You can read online Two Dimensional Carbon and write the review.

An important introduction to graphene, its physics and potentially significant applications, for graduate students, physicists and materials science researchers.
After a brief introduction to the fundamental properties of graphene, this book focuses on synthesis, characterization and application of various types of two-dimensional (2D) nanocarbons ranging from single/few layer graphene to carbon nanowalls and graphene oxides. Three major synthesis techniques are covered: epitaxial growth of graphene on SiC,
After a brief introduction to the fundamental properties of graphene, this book focuses on synthesis, characterization and application of various types of two-dimensional (2D) nanocarbons ranging from single/few layer graphene to carbon nanowalls and graphene oxides. Three major synthesis techniques are covered: epitaxial growth of graphene on SiC, chemical synthesis of graphene on metal, and chemical vapor deposition of vertically aligned carbon nanosheets or nanowalls. One chapter is dedicated to characterization of 2D nanocarbon using Raman spectroscopy. It provides extensive coverage for applications of 2D carbon in energy storage including supercapacitor, lithium ion battery and fuel cells.
After a brief introduction to the fundamental properties of graphene, this book focuses on synthesis, characterization and application of various types of two-dimensional (2D) nanocarbons ranging from single/few layer graphene to carbon nanowalls and graphene oxides. Three major synthesis techniques are covered: epitaxial growth of graphene on SiC, chemical synthesis of graphene on metal, and chemical vapor deposition of vertically aligned carbon nanosheets or nanowalls. One chapter is dedicated to characterization of 2D nanocarbon using Raman spectroscopy. It provides extensive coverage for applications of 2D carbon in energy storage including supercapacitor, lithium ion battery and fuel cells.
There are only a few discoveries and new technologies in materials science that have the potential to dramatically alter and revolutionize our material world. Discovery of two-dimensional (2D) materials, the thinnest form of materials to ever occur in nature, is one of them. After isolation of graphene from graphite in 2004, a whole other class of atomically thin materials, dominated by surface effects and showing completely unexpected and extraordinary properties, has been created. This book provides a comprehensive view and state-of-the-art knowledge about 2D materials such as graphene, hexagonal boron nitride (h-BN), transition metal dichalcogenides (TMD) and so on. It consists of 11 chapters contributed by a team of experts in this exciting field and provides latest synthesis techniques of 2D materials, characterization and their potential applications in energy conservation, electronics, optoelectronics and biotechnology.
With the emerging need for advanced sensing and imaging capabilities in personalized healthcare, there has been motivation to develop new classes of nanomaterials; with performance vastly superior to existing technologies. In this work, we explore the one- and two-dimensional forms of carbon nanomaterials, namely, single-walled carbon nanotubes (SWNTs), and graphene derivatives (graphene oxide, or GO), for their remarkable potential in biomedical imaging and sensing. This thesis presents three functional applications, along with the necessary processing at the interface of nanotechnology and biomaterials required to achieve the desired set of properties enabling these applications. First, we attempt to address the rise in antibiotic-resistant bacterial infections by developing a nano-probe for targeted sensing, with potential for early, non-invasive diagnosis of infectious diseases through optical imaging. Using genetically engineered M13 bacteriophage, we synthesize biologically-functionalized, aqueous-dispersed SWNTs, for actively-targeted, modularly-tunable, high-contrast, highly-specific detection of deep-tissue pathogenic infections, at an order-of-magnitude lower dosage compared to other probes reported in literature. Second, we investigate the role of guided surgery in enhancing the survival lifespan of patients with gynecological cancers. We deploy a combination of targeted SWNT probes, along with a custom-designed real-time intraoperative imaging system, which offers sub-millimeter resolution at a sensitivity over 93%. Using image-guided surgery in a mouse model of ovarian cancer, compared to the control group receiving non-guided surgery we report improvement in the median survival by 40%, with large societal benefit expected upon clinical translation. Third, we develop a scalable, one-step mild thermal annealing treatment for enhancing the properties of graphene derivatives, with no chemical treatments involved, while preserving the rich oxygen framework in GO unlike current protocols used in literature. This treatment provides a handle to control the spatial distribution of oxygen functional groups on the graphene basal plane. Using nano-bodies decorated on our treated GO substrate, we report 38% increase in the efficiency of cell capture from whole blood, compared to conventional sensors using as-synthesized GO. Finally, we discuss challenges in moving the field forward, and provide a brief glimpse into the next-generation imaging technologies currently under development, which are generally applicable to a much broader class of materials.
Symposium C, "Fundamentals of Low-Dimensional Carbon Nanomaterials," was held Nov. 29-Dec. 3 at the 2010 MRS Fall Meeting in Boston, Massachusetts. This resultant proceedings volume includes topics such as growth techniques for CNTs and graphene, structural characterization, novel properties, and interface & surface structures. Low-dimensional carbon nanostructures exhibit a rich structural diversity from zero-dimensional C60, one-dimensional carbon nanotubes (CNTs), and two-dimensional graphene and graphite oxides. These low-dimensional carbon nanostructures are at the forefront of materials science and provide a platform for understanding the growth mechanisms and properties of nanostructures in general. They exhibit novel properties with endless potential applications from high-speed electronics to high-performance composites. Although low-dimensional carbon nanomaterials have attracted great interest in the research community, the applications and commercialization of graphene and CNTs have, to date, not been as successful as anticipated. The need for significant improvements in material quality and structural uniformity exists.
Zero-Dimensional Carbon Nanomaterials: Material Design Methods, Properties and Applications covers advances in carbon dots, graphene quantum dots, carbon quantum dots, fullerenes and their applications. This book explores important aspects of preparing these materials for specific applications and includes an overview of the most relevant synthesis methods, with special emphasis on newer green methods and material synthesis from biomass sources. Thorough discussion of the materials key properties, including unique optical and electronic properties to enable them for a wide range of applications is included, along with applications in the fields of photovoltaic cells, catalysis, sensors, biomedical, nano devices and energy storage. This book is suitable for researchers and practitioners in materials science and engineering and may also be helpful for chemists and chemical engineers. Introduces the most relevant methods, properties and applications of carbon dots, graphene quantum dots, carbon quantum dots and fullerenes Reviews methods including green and biomass derived methods to prepare carbon nanomaterials to enhance properties (particularly optical and electronic) and improve performance for specific applications Discusses challenges and opportunities for commercial translation and use of carbon nanomaterials in energy, medicine, sensing, biomedical engineering and electronics applications