Download Free Turnpike Phenomenon And Symmetric Optimization Problems Book in PDF and EPUB Free Download. You can read online Turnpike Phenomenon And Symmetric Optimization Problems and write the review.

Written by a leading expert in turnpike phenomenon, this book is devoted to the study of symmetric optimization, variational and optimal control problems in infinite dimensional spaces and turnpike properties of their approximate solutions. The book presents a systematic and comprehensive study of general classes of problems in optimization, calculus of variations, and optimal control with symmetric structures from the viewpoint of the turnpike phenomenon. The author establishes generic existence and well-posedness results for optimization problems and individual (not generic) turnpike results for variational and optimal control problems. Rich in impressive theoretical results, the author presents applications to crystallography and discrete dispersive dynamical systems which have prototypes in economic growth theory. This book will be useful for researchers interested in optimal control, calculus of variations turnpike theory and their applications, such as mathematicians, mathematical economists, and researchers in crystallography, to name just a few.
The result of the second Appalachian conference on neurodynamics, this volume focuses on the problem of "order," its origins, evolution, and future. Central to this concern lies our understanding of time. Both classical and quantum physics have developed their conceptions within a framework of time symmetry. Divided into four major sections, this book: * provides refreshingly new approaches to the problem of the evolution of order, indicating the directions that need to be taken in subsequent conferences which will address learning and memory more directly; * addresses the issue of how information becomes transmitted in the nervous system; * shows how patterns are constructed at the synaptodendritic level of processing and how such pattern construction relates to image processing; and * deals with the control operations which operate on image processing to construct entities such as visual and auditory objects such as phonemes. The aim of the conference was to bring together professionals to exchange ideas -- some were fairly worked out; others were in their infancy. As a result, one of the most valuable aspects of the conference is that it fostered lasting interactive relationships among these leading researchers.
This book is devoted to the recent progress on the turnpike theory. The turnpike property was discovered by Paul A. Samuelson, who applied it to problems in mathematical economics in 1949. These properties were studied for optimal trajectories of models of economic dynamics determined by convex processes. In this monograph the author, a leading expert in modern turnpike theory, presents a number of results concerning the turnpike properties in the calculus of variations and optimal control which were obtained in the last ten years. These results show that the turnpike properties form a general phenomenon which holds for various classes of variational problems and optimal control problems. The book should help to correct the misapprehension that turnpike properties are only special features of some narrow classes of convex problems of mathematical economics. Audience This book is intended for mathematicians interested in optimal control, calculus of variations, game theory and mathematical economics.
This book is a printed edition of the Special Issue "Real-Time Optimization" that was published in Processes
This book is devoted to the study of the turnpike phenomenon and describes the existence of solutions for a large variety of infinite horizon optimal control classes of problems. Chapter 1 provides introductory material on turnpike properties. Chapter 2 studies the turnpike phenomenon for discrete-time optimal control problems. The turnpike properties of autonomous problems with extended-value integrands are studied in Chapter 3. Chapter 4 focuses on large classes of infinite horizon optimal control problems without convexity (concavity) assumptions. In Chapter 5, the turnpike results for a class of dynamic discrete-time two-player zero-sum game are proven. This thorough exposition will be very useful for mathematicians working in the fields of optimal control, the calculus of variations, applied functional analysis and infinite horizon optimization. It may also be used as a primary text in a graduate course in optimal control or as supplementary text for a variety of courses in other disciplines. Researchers in other fields such as economics and game theory, where turnpike properties are well known, will also find this Work valuable.
Nonlinear analysis is a broad, interdisciplinary field characterized by a remarkable mixture of analysis, topology, and applications. Its concepts and techniques provide the tools for developing more realistic and accurate models for a variety of phenomena encountered in fields ranging from engineering and chemistry to economics and biology. This volume focuses on topics in nonlinear analysis pertinent to the theory of boundary value problems and their application in areas such as control theory and the calculus of variations. It complements the many other books on nonlinear analysis by addressing topics previously discussed fully only in scattered research papers. These include recent results on critical point theory, nonlinear differential operators, and related regularity and comparison principles. The rich variety of topics, both theoretical and applied, make Nonlinear Analysis useful to anyone, whether graduate student or researcher, working in analysis or its applications in optimal control, theoretical mechanics, or dynamical systems. An appendix contains all of the background material needed, and a detailed bibliography forms a guide for further study.
The problems of interrelation between human economics and natural environment include scientific, technical, economic, demographic, social, political and other aspects that are studied by scientists of many specialities. One of the important aspects in scientific study of environmental and ecological problems is the development of mathematical and computer tools for rational management of economics and environment. This book introduces a wide range of mathematical models in economics, ecology and environmental sciences to a general mathematical audience with no in-depth experience in this specific area. Areas covered are: controlled economic growth and technological development, world dynamics, environmental impact, resource extraction, air and water pollution propagation, ecological population dynamics and exploitation. A variety of known models are considered, from classical ones (Cobb Douglass production function, Leontief input-output analysis, Solow models of economic dynamics, Verhulst-Pearl and Lotka-Volterra models of population dynamics, and others) to the models of world dynamics and the models of water contamination propagation used after Chemobyl nuclear catastrophe. Special attention is given to modelling of hierarchical regional economic-ecological interaction and technological change in the context of environmental impact. Xlll XIV Construction of Mathematical Models ...
A rigorous introduction to optimal control theory, with an emphasis on applications in economics. This book bridges optimal control theory and economics, discussing ordinary differential equations, optimal control, game theory, and mechanism design in one volume. Technically rigorous and largely self-contained, it provides an introduction to the use of optimal control theory for deterministic continuous-time systems in economics. The theory of ordinary differential equations (ODEs) is the backbone of the theory developed in the book, and chapter 2 offers a detailed review of basic concepts in the theory of ODEs, including the solution of systems of linear ODEs, state-space analysis, potential functions, and stability analysis. Following this, the book covers the main results of optimal control theory, in particular necessary and sufficient optimality conditions; game theory, with an emphasis on differential games; and the application of control-theoretic concepts to the design of economic mechanisms. Appendixes provide a mathematical review and full solutions to all end-of-chapter problems. The material is presented at three levels: single-person decision making; games, in which a group of decision makers interact strategically; and mechanism design, which is concerned with a designer's creation of an environment in which players interact to maximize the designer's objective. The book focuses on applications; the problems are an integral part of the text. It is intended for use as a textbook or reference for graduate students, teachers, and researchers interested in applications of control theory beyond its classical use in economic growth. The book will also appeal to readers interested in a modeling approach to certain practical problems involving dynamic continuous-time models.
A leading economist trains a lens on his own discipline to uncover when it fails and when it works.