Download Free Turning Points In Solid State Materials And Surface Science Book in PDF and EPUB Free Download. You can read online Turning Points In Solid State Materials And Surface Science and write the review.

The scientific exploration of solid materials represents one of the most important, fascinating and rewarding areas of scientific endeavour in the present day, not only from the viewpoint of advancing fundamental understanding but also from the industrial perspective, given the immense diversity of applications of solid materials across the full range of commercial sectors. Turning Points in Solid-State, Materials and Surface Science provides a state-of-the-art survey of some of the most important recent developments across the spectrum of solid-state, materials and surface sciences, while at the same time reflecting on key turning points in the evolution of this scientific discipline and projecting into the directions for future research progress. The book serves as a timely tribute to the life and work of Professor Sir John Meurig Thomas FRS, who has made monumental contributions to this field of science throughout his distinguished 50-year career in research, during which he has initiated, developed and exploited many important branches of this field. Indeed, the depth and breadth of his contributions towards the evolution and advancement of this scientific discipline, and his critical role in elevating this field to the important position that it now occupies within modern science, are demonstrated recurrently throughout the chapters of this book. Individual chapters are contributed by internationally leading experts in their respective fields, and the topics covered include solid-state chemistry of inorganic and organic materials, heterogeneous catalysis, surface science and materials science, with one section of the book focusing on modern developments in electron microscopy and its contributions to chemistry and materials science. The book serves as a modern and up-to-date monograph in these fields, and provides a valuable resource to researchers in academia and industry who require a comprehensive source of information on this important and rapidly developing subject.
The scientific exploration of solid materials represents one of the most important, fascinating and rewarding areas of scientific endeavour in the present day, not only from the viewpoint of advancing fundamental understanding but also from the industrial perspective, given the immense diversity of applications of solid materials across the full range of commercial sectors. Turning Points in Solid-State, Materials and Surface Science provides a state-of-the-art survey of some of the most important recent developments across the spectrum of solid-state, materials and surface sciences, while at the same time reflecting on key turning points in the evolution of this scientific discipline and projecting into the directions for future research progress. The book serves as a timely tribute to the life and work of Professor Sir John Meurig Thomas FRS, who has made monumental contributions to this field of science throughout his distinguished 50-year career in research, during which he has initiated, developed and exploited many important branches of this field. Indeed, the depth and breadth of his contributions towards the evolution and advancement of this scientific discipline, and his critical role in elevating this field to the important position that it now occupies within modern science, are demonstrated recurrently throughout the chapters of this book. Individual chapters are contributed by internationally leading experts in their respective fields, and the topics covered include solid-state chemistry of inorganic and organic materials, heterogeneous catalysis, surface science and materials science, with one section of the book focusing on modern developments in electron microscopy and its contributions to chemistry and materials science. The book serves as a modern and up-to-date monograph in these fields, and provides a valuable resource to researchers in academia and industry who require a comprehensive source of information on this important and rapidly developing subject.
This two-volume book provides an overview of physical techniques used to characterize the structure of solid materials, on the one hand, and to investigate the reactivity of their surface, on the other. Therefore this book is a must-have for anyone working in fields related to surface reactivity. Among the latter, and because of its most important industrial impact, catalysis has been used as the directing thread of the book. After the preface and a general introduction to physical techniques by M. Che and J.C. Vedrine, two overviews on physical techniques are presented by G. Ertl and Sir J.M. Thomas for investigating model catalysts and porous catalysts, respectively. The book is organized into four parts: Molecular/Local Spectroscopies, Macroscopic Techniques, Characterization of the Fluid Phase (Gas and/ or Liquid), and Advanced Characterization. Each chapter focuses upon the following important themes: overview of the technique, most important parameters to interpret the experimental data, practical details, applications of the technique, particularly during chemical processes, with its advantages and disadvantages, conclusions.
Structural phase transitions, mechanical deformations, and the embryonic stages of melting and crystallization are examples of phenomena that can now be imaged in unprecedented structural detail with high spatial resolution, and ten orders of magnitude as fast as hitherto. No monograph in existence attempts to cover the revolutionary dimensions that EM in its various modes of operation nowadays makes possible. The authors of this book chart these developments, and also compare the merits of coherent electron waves with those of synchrotron radiation. They judge it prudent to recall some important basic procedural and theoretical aspects of imaging and diffraction so that the reader may better comprehend the significance of the new vistas and applications now afoot. This book is not a vade mecum - numerous other texts are available for the practitioner for that purpose.
John Meurig Thomas is a former Director of the Royal Institution of Great Britain, a former head of the Department of Physical Chemistry and former Master of Peterhouse, University of Cambridge. A world-renowned solid-state, materials and surface chemist, he has been an educator, researcher, academic administrator, author of university texts, government advisor, industrial consultant and trustee of national museums in a career spanning over 50 years. Recipient of many international awards, including the Linus Pauling, Willard–Gibbs, Kapitza, Natta, Stokes, Davy and Faraday medals, he is also a fellow of the Royal Society (1977), of the American Philosophical Society (1993) and of ten other national academies. He is best known for his fundamental work in heterogeneous catalysis, chemical electron microscopy and in the popularisation of science, for which, in conjunction with his services to chemistry, he was knighted (1991). He is also founding editor of three scientific journals and editor or co-editor of some 30 monographs. A new mineral, meurigite, was named in his honour (1995). Most recently in 2016, Sir John was awarded the Royal Medal for Physical Sciences by the Royal Society. Drawn from over 1200 publications, this volume contains a summarised account of Sir John's work, with a selection of the new techniques pioneered and discovered by him and his colleagues. Also included are popular science articles, and various illustrations of techniques which have enhanced our knowledge of many facets of condensed matter science. Contributions from 80 peers, colleagues, former co-workers, students and friends worldwide who have interacted with or been influenced by him are a tribute to the professional and personal life of Sir John, making this book a unique reflective summary of the work of one of the greatest achievers in modern British physical science.
A comprehensive reference on nanoscale materials chemistry—now revised and updated. This extensive text provides twenty-two revised chapters on the preparations, applications, and characterization as well as the environmental and toxicological aspects of nanoscale materials, with an emphasis on the chemistry component. This Second Edition contains core topics including: New synthetic methods for nanomaterials Nanostructured solids Organized two- and three-dimensional nanocrystals Nanotubes, ribbons, and sheets Nanocatalysts, sorbents, and energy applications Unique physical properties of nanomaterials Photochemistry of nanomaterials Biological and environmental aspects of nanomaterials With input from top experts in the field, such as Bruce Dunn, Vicki Grassian, Warren Ford, and Chris Sorensen, among others, Nanoscale Materials in Chemistry presents a balanced survey of different topics in basic nanoparticle science, and includes helpful end-of-chapter questions and answers. Significantly expanded, the Second Edition remains a key text for understanding the fundamentals of nanoscale materials chemistry and a reliable resource for scientists and researchers.
This long-awaited second edition of the successful introduction to the fundamentals of heterogeneous catalysis is now completely revised and updated. Written by internationally acclaimed experts, this textbook includes fundamentals of adsorption, characterizing catalysts and their surfaces, the significance of pore structure and surface area, solid-state and surface chemistry, poisoning, promotion, deactivation and selectivity of catalysts, as well as catalytic process engineering. A final section provides a number of examples and case histories. With its color and numerous graphics plus references to help readers to easily find further reading, this is a pivotal work for an understanding of the principles involved.
The shift towards being as environmentally-friendly as possible has resulted in the need for this important volume on heterogeneous catalysis. Edited by the father and pioneer of Green Chemistry, Professor Paul Anastas, and by the renowned chemist, Professor Robert Crabtree, this volume covers many different aspects, from industrial applications to the latest research straight from the laboratory. It explains the fundamentals and makes use of everyday examples to elucidate this vitally important field.