Download Free Tumor Suppressor Genes Book in PDF and EPUB Free Download. You can read online Tumor Suppressor Genes and write the review.

David Fisher, MD, PhD, and an authoritative panel of academic, cutting-edge researchers review and summarize the current state of the field. Describing the broad roles of tumor suppressors from a perspective based in molecular biology and genetics, the authors detail the major suppressors and the pathways they regulate, including cell cycle progression, stress responses, apoptosis, and responses to DNA damage. Leading-edge and forward-looking, Tumor Suppressor Genes in Human Cancer illuminates what is currently known of tumor suppressor genes and their regulation, work that is already beginning to revolutionize cancer target elucidation, drug discovery, and treatment design.
This comprehensive encyclopedic reference provides rapid access to focused information on topics of cancer research for clinicians, research scientists and advanced students. Given the overwhelming success of the first edition, which appeared in 2001, and fast development in the different fields of cancer research, it has been decided to publish a second fully revised and expanded edition. With an A-Z format of over 7,000 entries, more than 1,000 contributing authors provide a complete reference to cancer. The merging of different basic and clinical scientific disciplines towards the common goal of fighting cancer makes such a comprehensive reference source all the more timely.
Par-4 is a naturally occurring tumor suppressor. Studies have indicated that overexpression of Par-4 selectively induces apoptosis in cancer cells while leaving normal, health, cells unaffected. Mechanisms contributing to this cancer-selective action of Par-4 have been associated with PKA activation of intracellular Par-4 in cancer cells or GRP78 expression primarily on the surface of cancer cells. On the other hand, endogenous Par-4 sensitizes cells to the action of a broad range of apoptotic inducers acting via the extrinsic and intrinsic pathways. A number of binding partners of Par-4 have been identified and shown to regulate Par-4 function in cancer and other diseases, such as Alzheimer’s and major depression. Recent studies have recognized a number of natural products, dietary supplements, synthetic molecules and FDA-approved drugs that induce the secretion of Par-4 protein to cause apoptosis in primary or metastatic tumors, one of which is in clinical trials. More than 50 different laboratories worldwide are involved in Par-4 based research of this unique protein that has progressed from the bench to clinical trials. This second, companion volume will provide a comprehensive overview of Par-4’s role in cancer and other diseases. Chapters are written by leading researchers, and will be useful for a broad audience across the scientific community, particularly students and trainees, who are the next generation of scientists and clinicians to participate in new studies and discoveries on Par-4.
"Yet another cell and molecular biology book? At the very least, you would think that if I was going to write a textbook, I should write one in an area that really needs one instead of a subject that already has multiple excellent and definitive books. So, why write this book, then? First, it's a course that I have enjoyed teaching for many years, so I am very familiar with what a student really needs to take away from this class within the time constraints of a semester. Second, because it is a course that many students take, there is a greater opportunity to make an impact on more students' pocketbooks than if I were to start off writing a book for a highly specialized upper- level course. And finally, it was fun to research and write, and can be revised easily for inclusion as part of our next textbook, High School Biology."--Open Textbook Library.
This work serves as an introduction to the applications of molecular biology in the field of oncology. It provides a basic understanding of the genetic events involved in fully developed human cancer, including research into inherited and acquired gene defects initiating new neoplasms and the subsequent genetic alterations involved in tumor progression. Some of the specific topics explored include gene control, molecular therapy and antibodies, drug resistance, growth factors and receptors, and tumor biology. While intended primarily as an advanced text for oncologists, postgraduate molecular geneticists and molecular biologists, the book will certainly be of interest to other researchers who frequently encounter cancer in their practice.
Cancer is a collection of diseases that can affect basically every organ of our body, all of which have in common uncontrolled cellular growth. The cells forming our body have the potential to grow in the context of wound healing or for the constant replacement of cells in our blood, skin or intestine. Behind every newly diagnosed malignant tumor in adulthood there is an individual history of probably 20 or more years of tumorigenesis. Therefore, malignant tumor formation often takes time making cancer in most cases to an aging-related disease that we seem not to be able to evade. However, tumorigenesis is dependent on multiple environmental influences, many of which we have under control by lifestyle decisions, such as retaining from smoking, selecting healthy food and being physically active. Thus, cancer preventive interventions are the most effective way to fight against cancer. This textbook wants not only to describe basic mechanisms leading to cancer but also to provide the readers with a more holistic view including cancer surveaillance mechanisms of the immune system. We will place these insights in the context of the personal consequences of everyone’s lifestyle decisions. The content of the book is linked to the lecture course in “Cancer Biology”, which is given by Prof. Carlberg since 2005 at the University of Eastern Finland in Kuopio. Moreover, biological processes explained in this book will be set into a clinical context using the experience of Dr. Velleuer in the daily care in oncology. This book also relates to the textbooks “Mechanisms of Gene Regulation: How Science Works” (ISBN 978-3-030-52321-3), “Human Epigenetics: How Science Works” (ISBN 978-3-030-22907-8) and “Nutrigenomics: How Science Works” (ISBN 978-3-030-36948-4), the studying of which may be interesting to readers who like to get more detailed information.
Incorporating the most important advances in the fast-growing field of cancer biology, the text maintains all of its hallmark features. It is admired by students, instructors, researchers, and clinicians around the world for its clear writing, extensive full-color art program, and numerous pedagogical features.
Written with the busy practice in mind, this book delivers clinically focused, evidence-based gynecology guidance in a quick-reference format. It explores etiology, screening, tests, diagnosis, and treatment for a full range of gynecologic health issues. The coverage includes the full range of gynecologic malignancies, reproductive endocrinology and infertility, infectious diseases, urogynecologic problems, gynecologic concerns in children and adolescents, and surgical interventions including minimally invasive surgical procedures. Information is easy to find and absorb owing to the extensive use of full-color diagrams, algorithms, and illustrations. The new edition has been expanded to include aspects of gynecology important in international and resource-poor settings.
Decades of research on the tumor suppressor p53 have revealed that it plays a significant role as a "guardian of the genome," protecting cells against genotoxic stress. In recent years, p53 research has begun to move into the clinic in attempts to understand how p53 is frequently inactivated in-and sometimes even promotes-human cancer. Written and edited by experts in the field, this collection from Cold Spring Harbor Perspectives in Medicine covers the rapid progress that has recently been made in basic and clinical research on p53. The contributors review new observations about its basic biology, providing updates on the functions of its isoforms and domains, the myriad stresses and signals that trigger its activation or repression, and its downstream effects on genome stability and the cell cycle that enforce tumor suppression in different cell and tissue types. They also discuss how p53 dysfunction contributes to cancer, exploring the various inherited and somatic mutations in the human TP53 gene, the impact of mutant p53 proteins on tumorigenesis, and the prognostic value and clinical outcomes of these mutations. Drugs that are being developed to respond to tumors harboring aberrant p53 are also described. This book is therefore essential reading for all cancer biologists, cell and molecular biologists, and pharmacologists concerned with the treatment of this disease.