Download Free Trusted Execution Environments Book in PDF and EPUB Free Download. You can read online Trusted Execution Environments and write the review.

"This book is a must have resource guide for anyone who wants to ... implement TXT within their environments. I wish we had this guide when our engineering teams were implementing TXT on our solution platforms!” John McAuley,EMC Corporation "This book details innovative technology that provides significant benefit to both the cloud consumer and the cloud provider when working to meet the ever increasing requirements of trust and control in the cloud.” Alex Rodriguez, Expedient Data Centers "This book is an invaluable reference for understanding enhanced server security, and how to deploy and leverage computing environment trust to reduce supply chain risk.” Pete Nicoletti. Virtustream Inc. Intel® Trusted Execution Technology (Intel TXT) is a new security technology that started appearing on Intel server platforms in 2010. This book explains Intel Trusted Execution Technology for Servers, its purpose, application, advantages, and limitations. This book guides the server administrator / datacenter manager in enabling the technology as well as establishing a launch control policy that he can use to customize the server’s boot process to fit the datacenter’s requirements. This book explains how the OS (typically a Virtual Machine Monitor or Hypervisor) and supporting software can build on the secure facilities afforded by Intel TXT to provide additional security features and functions. It provides examples how the datacenter can create and use trusted pools. With a foreword from Albert Caballero, the CTO at Trapezoid.
With growing interest in computer security and the protection of the code and data which execute on commodity computers, the amount of hardware security features in today's processors has increased significantly over the recent years. No longer of just academic interest, security features inside processors have been embraced by industry as well, with a number of commercial secure processor architectures available today. This book aims to give readers insights into the principles behind the design of academic and commercial secure processor architectures. Secure processor architecture research is concerned with exploring and designing hardware features inside computer processors, features which can help protect confidentiality and integrity of the code and data executing on the processor. Unlike traditional processor architecture research that focuses on performance, efficiency, and energy as the first-order design objectives, secure processor architecture design has security as the first-order design objective (while still keeping the others as important design aspects that need to be considered). This book aims to present the different challenges of secure processor architecture design to graduate students interested in research on architecture and hardware security and computer architects working in industry interested in adding security features to their designs. It aims to educate readers about how the different challenges have been solved in the past and what are the best practices, i.e., the principles, for design of new secure processor architectures. Based on the careful review of past work by many computer architects and security researchers, readers also will come to know the five basic principles needed for secure processor architecture design. The book also presents existing research challenges and potential new research directions. Finally, this book presents numerous design suggestions, as well as discusses pitfalls and fallacies that designers should avoid.
Recently, mobile security has garnered considerable interest in both the research community and industry due to the popularity of smartphones. The current smartphone platforms are open systems that allow application development, also for malicious parties. To protect the mobile device, its user, and other mobile ecosystem stakeholders such as network operators, application execution is controlled by a platform security architecture. This book explores how such mobile platform security architectures work. We present a generic model for mobile platform security architectures: the model illustrates commonly used security mechanisms and techniques in mobile devices and allows a systematic comparison of different platforms. We analyze several mobile platforms using the model. In addition, this book explains hardware-security mechanisms typically present in a mobile device. We also discuss enterprise security extensions for mobile platforms and survey recent research in the area of mobile platform security. The objective of this book is to provide a comprehensive overview of the current status of mobile platform security for students, researchers, and practitioners. Table of Contents: Preface / Introduction / Platform Security Model / Mobile Platforms / Platform Comparison / Mobile Hardware Security / Enterprise Security Extensions / Platform Security Research / Conclusions / Bibliography / Authors' Biographies
A Practical Guide to TPM 2.0: Using the Trusted Platform Module in the New Age of Security is a straight-forward primer for developers. It shows security and TPM concepts, demonstrating their use in real applications that the reader can try out. Simply put, this book is designed to empower and excite the programming community to go out and do cool things with the TPM. The approach is to ramp the reader up quickly and keep their interest.A Practical Guide to TPM 2.0: Using the Trusted Platform Module in the New Age of Security explains security concepts, describes the TPM 2.0 architecture, and provides code and pseudo-code examples in parallel, from very simple concepts and code to highly complex concepts and pseudo-code. The book includes instructions for the available execution environments and real code examples to get readers up and talking to the TPM quickly. The authors then help the users expand on that with pseudo-code descriptions of useful applications using the TPM.
Responsible Genomic Data Sharing: Challenges and Approaches brings together international experts in genomics research, bioinformatics and digital security who analyze common challenges in genomic data sharing, privacy preserving technologies, and best practices for large-scale genomic data sharing. Practical case studies, including the Global Alliance for Genomics and Health, the Beacon Network, and the Matchmaker Exchange, are discussed in-depth, illuminating pathways forward for new genomic data sharing efforts across research and clinical practice, industry and academia.
"A staggeringly comprehensive review of the state of modern cryptography. Essential for anyone getting up to speed in information security." - Thomas Doylend, Green Rocket Security An all-practical guide to the cryptography behind common tools and protocols that will help you make excellent security choices for your systems and applications. In Real-World Cryptography, you will find: Best practices for using cryptography Diagrams and explanations of cryptographic algorithms Implementing digital signatures and zero-knowledge proofs Specialized hardware for attacks and highly adversarial environments Identifying and fixing bad practices Choosing the right cryptographic tool for any problem Real-World Cryptography reveals the cryptographic techniques that drive the security of web APIs, registering and logging in users, and even the blockchain. You’ll learn how these techniques power modern security, and how to apply them to your own projects. Alongside modern methods, the book also anticipates the future of cryptography, diving into emerging and cutting-edge advances such as cryptocurrencies, and post-quantum cryptography. All techniques are fully illustrated with diagrams and examples so you can easily see how to put them into practice. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology Cryptography is the essential foundation of IT security. To stay ahead of the bad actors attacking your systems, you need to understand the tools, frameworks, and protocols that protect your networks and applications. This book introduces authentication, encryption, signatures, secret-keeping, and other cryptography concepts in plain language and beautiful illustrations. About the book Real-World Cryptography teaches practical techniques for day-to-day work as a developer, sysadmin, or security practitioner. There’s no complex math or jargon: Modern cryptography methods are explored through clever graphics and real-world use cases. You’ll learn building blocks like hash functions and signatures; cryptographic protocols like HTTPS and secure messaging; and cutting-edge advances like post-quantum cryptography and cryptocurrencies. This book is a joy to read—and it might just save your bacon the next time you’re targeted by an adversary after your data. What's inside Implementing digital signatures and zero-knowledge proofs Specialized hardware for attacks and highly adversarial environments Identifying and fixing bad practices Choosing the right cryptographic tool for any problem About the reader For cryptography beginners with no previous experience in the field. About the author David Wong is a cryptography engineer. He is an active contributor to internet standards including Transport Layer Security. Table of Contents PART 1 PRIMITIVES: THE INGREDIENTS OF CRYPTOGRAPHY 1 Introduction 2 Hash functions 3 Message authentication codes 4 Authenticated encryption 5 Key exchanges 6 Asymmetric encryption and hybrid encryption 7 Signatures and zero-knowledge proofs 8 Randomness and secrets PART 2 PROTOCOLS: THE RECIPES OF CRYPTOGRAPHY 9 Secure transport 10 End-to-end encryption 11 User authentication 12 Crypto as in cryptocurrency? 13 Hardware cryptography 14 Post-quantum cryptography 15 Is this it? Next-generation cryptography 16 When and where cryptography fails
This book presents state-of-the-art research on security and privacy- preserving for IoT and 5G networks and applications. The accepted book chapters covered many themes, including traceability and tamper detection in IoT enabled waste management networks, secure Healthcare IoT Systems, data transfer accomplished by trustworthy nodes in cognitive radio, DDoS Attack Detection in Vehicular Ad-hoc Network (VANET) for 5G Networks, Mobile Edge-Cloud Computing, biometric authentication systems for IoT applications, and many other applications It aspires to provide a relevant reference for students, researchers, engineers, and professionals working in this particular area or those interested in grasping its diverse facets and exploring the latest advances on security and privacy- preserving for IoT and 5G networks.
This brief considers the various stakeholders in today's mobile device ecosystem, and analyzes why widely-deployed hardware security primitives on mobile device platforms are inaccessible to application developers and end-users. Existing proposals are also evaluated for leveraging such primitives, and proves that they can indeed strengthen the security properties available to applications and users, without reducing the properties currently enjoyed by OEMs and network carriers. Finally, this brief makes recommendations for future research that may yield practical and deployable results.
This book comprises selected papers from the 14th International Conference on Multimedia and Ubiquitous Engineering (MUE 2020) and the 14th International Conference on Future Information Technology (Future Tech 2020). And this book presents the latest developments in the field of ubiquitous computing technologies. It also discusses the state of the art in the development of computational methods, involving theory, algorithms, numerical simulation, error and uncertainty analysis, and novel applications of new processing techniques in engineering, science, and other disciplines related to ubiquitous computing. This book is a great resource for students, researchers, and professors working in the field of ubiquitous computing.