Download Free Trigonometry Geometry And The Conception Of Space Book in PDF and EPUB Free Download. You can read online Trigonometry Geometry And The Conception Of Space and write the review.

"Trigonometry, Geometry, and the Conception of Space is primarily a textbook for students of architecture, design, or any other subject that requires a strong, practical understanding of measurement. Topics that are traditionally included for future calculus students have been replaced with a study of three-dimensional space and geometry. The first portion of the book focuses on pure trigonometry: sets and numbers, the six trigonometric functions and their inverses, and applications. The second portion covers more geometric topics like cylindrical and spherical coordinate systems, conic sections, and quadric surfaces. The material emphasizes alternative ways to describe points in space and how to transfer between them. Written for highly visual courses exploring three-dimensional space and the objects that lie within it, Trigonometry, Geometry, and the Conception of Space offers fresh, modern instruction for classes in architecture, graphic design, and mathematics. Paul Tokorcheck earned his Ph.D. in mathematics at UC Santa Cruz, with research interests in group representations, number theory, and Lie theory. He is now a lecturer with the Department of Mathematics at Iowa State University. Apart from mathematics, Dr. Tokorcheck's life journey has taken him through a variety of jobs, from cooking in award-winning kitchens of California, to teaching high school in northern Ghana, to resettling refugees from the civil wars in Liberia and Sierra Leone."
From the Preface. THE position of any real point in space may be determined by eans of three real coordinates, and any three real quantities may be regarded as determining the position of such a point. In Geometry as in other branches of Pure Mathematics the question naturally arises, whether the quantities concerned need necessarily be real. What, it may be asked, is the nature of the Geometry in which the coordinates of any point may be complex quantities of the form x + ix', y + iy' , z + iz'? Such a Geometry contains as a particular case the Geometry of real points. From it the Geometry of real points may be deduced (a) by regarding x', y', z' as zero, (b) by regarding x, y, z as zero, or (c) by considering only those points, the coordinates of which are real multiples of the same complex quantity a+ib. The relationship of the more generalised conception of Geometry and of space to the particular case of real Geometry is of importance, as points, whose determining elements are complex quantities, arise both in coordinate and in projective Geometry. In this book an attempt has been made to work out and determine this relationship. Either of two methods might have been adopted. It would have been possible to lay down certain axioms and premises and to have developed a general theory therefrom. This has been done by other authors. The alternative method, which has been employed here, is to add to the axioms of real Geometry certain additional assumptions. From these, by means of the methods and principles of real Geometry, an extension of the existing ideas and conception of Geometry can be obtained. In this way the reader is able to approach the simpler and more concrete theorems in the first instance, and step by step the well-known theorems are extended and generalised. A conception of the imaginary is thus gradually built up and the relationship between the imaginary and the real is exemplified and developed. The theory as here set forth may be regarded from the analytical point of view as an exposition of the oft quoted but seldom explained "Principle of Continuity." The fundamental definition of Imaginary points is that given by Dr Karl v. Staudt in his Beiträge zur Geometrie der Lage; Nuremberg, 1856 and 1860. The idea of (a, beta) figures, independently evolved by the author, is due to J. V. Poncelet, who published it in his Traité des Propriétés Projectives des Figures in 1822. The matter contained in four or five pages of Chapter II is taken from the lectures delivered by the late Professor Esson, F.R.S., Savilian Professor of Geometry in the University of Oxford, and may be partly traced to the writings of v. Staudt. For the remainder of the book the author must take the responsibility. Inaccuracies and inconsistencies may have crept in, but long experience has taught him that these will be found to be due to his own deficiencies and not to fundamental defects in the theory. Those who approach the subject with an open mind will, it is believed, find in these pages a consistent and natural theory of the imaginary. Many problems however still require to be worked out and the subject offers a wide field for further investigations.
THE position of any real point in space may be determined by eans of three real coordinates, and any three real quantities may be regarded as determining the position of such a point. In Geometry as in other branches of Pure Mathematics the question naturally arises, whether the quantities concerned need necessarily be real. What, it may be asked, is the nature of the Geometry in which the coordinates of any point may be complex quantities of the form x + ix', y + iy', z + iz'? Such a Geometry contains as a particular case the Geometry of real points. From it the Geometry of real points may be deduced (a) by regarding x', y', z' as zero, (b) by regarding x, y, z as zero, or (c) by considering only those points, the coordinates of which are real multiples of the same complex quantity a+ib. The relationship of the more generalised conception of Geometry and of space to the particular case of real Geometry is of importance, as points, whose determining elements are complex quantities, arise both in coordinate and in projective Geometry. In this book an attempt has been made to work out and determine this relationship. Either of two methods might have been adopted. It would have been possible to lay down certain axioms and premises and to have developed a general theory therefrom. This has been done by other authors. The alternative method, which has been employed here, is to add to the axioms of real Geometry certain additional assumptions. From these, by means of the methods and principles of real Geometry, an extension of the existing ideas and conception of Geometry can be obtained. In this way the reader is able to approach the simpler and more concrete theorems in the first instance, and step by step the well-known theorems are extended and generalised. A conception of the imaginary is thus gradually built up and the relationship between the imaginary and the real is exemplified and developed. The theory as here set forth may be regarded from the analytical point of view as an exposition of the oft quoted but seldom explained " Principle of Continuity." The fundamental definition of Imaginary points is that given by Dr Karl v. Staudt in his Beiträge zur Geometrie der Lage; Nuremberg, 1856 and 1860. The idea of (α, β) figures, independently evolved by the author, is due to J. V. Poncelet, who published it in his Traité des Propriétés Projectives des Figures in 1822. The matter contained in four or five pages of Chapter II is taken from the lectures delivered by the late Professor Esson, F.R.S., Savilian Professor of Geometry in the University of Oxford, and may be partly .traced to the writings of v. Staudt. For the remainder of the book the author must take the responsibility. Inaccuracies and inconsistencies may have crept in, but long experience has taught him that these will be found to be due to his own deficiencies and not to fundamental defects in the theory. Those who approach the subject with an open mind will, it is believed, find in these pages a consistent and natural theory of the imaginary. Many problems however still require to be worked out and the subject offers a wide field for further investigations.
Greek ideas about geometry, straight-edge and compass constructions, and the nature of mathematical proof dominated mathematical thought for about 2,000 years.
There is no doubt about the fact that our daily lives consistently revolve around mathematics. Whether one knows it or not, just about everything that is seen and felt throughout the day involves some kind of math. The study of geometry can give students a better understanding of how buildings, furniture, vehicles, and other infrastructural models are designed and built. Everything that is created and built around us has involved some kind of geometry. A geometric formulas study guide can help students to not only understand the formulas, but also to retain them within their memories to make solving problems and understanding a much easier task.
The main aim of this book is to discuss fundamental developments on the question of being in Western and African philosophy using analytic metaphysics as a framework. It starts with the two orthodox responses to the question of being, namely, the subject-verb-object language view and the rheomodic language view. In the first view, being is conceived through the analysis of language structure, where it is represented by subjects (particulars), objects, and relations (often universals). In the second view, there are different variations; however, the common idea is that the world's structure is revealed in the root verb of terms. This suggests a holistic and dynamic conception of being, where everything is in a continuous process of action. The book builds on analytic philosophy and explores metaphysical concepts such as space-time, modality, causation, indeterminism versus determinism, and mind and body. The book shows that in both Western and African thought, (i) similarities in different studies confirm that philosophy is a universal activity, (ii) differences within a context and beyond confirm the perspectival nature of human knowledge as individuals attempt to interpret reality, and (iii) language influences the conceptualization of being in a particular area. One of the novel aspects is the development of visual and mathematical African models of space and time.