Download Free Tribology And Mechanics Of Magnetic Storage Systems Book in PDF and EPUB Free Download. You can read online Tribology And Mechanics Of Magnetic Storage Systems and write the review.

Since January 1990, when the first edition ofthis first-of-a-kind book appeared, there has been much experimental and theoretical progress in the multi disciplinary subject of tribology and mechanics of magnetic storage devices. The subject has matured into a rigorous discipline, and many university tribology and mechanics courses now routinely contain material on magnetic storage devices. The major growth in the subject has been on the micro- and nanoscale aspects of tribology and mechanics. Today, most large magnetic storage industries use atomic force microscopes to image the magnetic storage components. Many companies use variations of AFMs such as friction force microscopes (FFMs) for frictional studies. These instruments have also been used for studying scratch, wear, and indentation. These studies are valuable in the fundamental understanding of interfacial phenomena. In the second edition, I have added a new chapter, Chapter 11, on micro and nanoscale aspects of tribology and mechanics of magnetic storage compo nents. This chapter presents the state of the art of the micro/nanotribology and micro/nanomechanics of magnetic storage components. In addition, typographical errors in Chapters 1 to 10 and the appendixes have been corrected. These additions update this book and make it more valuable to researchers of the subject. I am grateful to many colleagues and particularly to my students, whose work is reported in Chapter 11. I thank my wife, Sudha, who has been forbearing during the progress of the research reported in this chapter.
Proceedings of the NATO Advanced Study Institute, June 25-July 7, 2000, Rhodes, Greece
A fully updated version of the popular Introduction to Tribology, the second edition of this leading tribology text introduces the major developments in the understanding and interpretation of friction, wear and lubrication. Considerations of friction and wear have been fully revised to include recent analysis and data work, and friction mechanisms have been reappraised in light of current developments. In this edition, the breakthroughs in tribology at the nano- and micro- level as well as recent developments in nanotechnology and magnetic storage technologies are introduced. A new chapter on the emerging field of green tribology and biomimetics is included. Introduces the topic of tribology from a mechanical engineering, mechanics and materials science points of view Newly updated chapter covers both the underlying theory and the current applications of tribology to industry Updated write-up on nanotribology and nanotechnology and introduction of a new chapter on green tribology and biomimetics
This textbook and comprehensive reference source and serves as a timely, practical introduction to the principles of nanotribology and nanomechanics. This 4th edition has been completely revised and updated, concentrating on the key measurement techniques, their applications, and theoretical modeling of interfaces. It provides condensed knowledge of the field from the mechanics and materials science perspectives to graduate students, research workers, and practicing engineers.
Tribology of Magnetic Storage Systems is dedicated to the modern developments in the macro- and microtribology and mechanics of magnetic storage systems. This collection of papers, previously published as Special Issues of the Proceedings of the Institution of Mechanical Engineers in the Journal of Engineering Tribology (Part J) makes recent research in this important and rapidly developing area of engineering tribology accessible to industrial and academic researchers world-wide. The need for higher and higher recording densities in the modern magnetic recording process requires that surfaces be as smooth as possible, and flying height be as small as possible, in the interaction between magnetic medium and magnetic head. This presents significant challenges to researchers and designers within the industry. New techniques in atomic force microscopy and friction force microscopy have led to the development of the science of microtribology. Studies within this field are being conducted to enhance understanding of interfacial phenomena in magnetic storage devices.
Tribology covers the fundamentals of tribology and the tribological response of all types of materials, including metals, ceramics, and polymers. The book provides a solid scientific foundation without relying on extensive mathematics, an approach that will allow readers to formulate appropriate solutions when faced with practical problems. Topics considered include fundamentals of surface topography and contact, friction, lubrication, and wear. The book also presents up-to-date discussions on the treatment of wear in the design process, tribological applications of surface engineering, and materials for sliding and rolling bearings. Tribology will be valuable to engineers in the field of tribology, mechanical engineers, physicists, chemists, materials scientists, and students. Features Provides an excellent general introduction to the friction, wear, and lubrication of materials Presents a balanced comparison of the tribological behavior of metals, ceramics, and polymers Includes discussions on tribological applications of surface engineering and materials for sliding and rolling bearings Emphasizes the scientific foundation of tribology Discusses the treatment of wear in the design process Uses SI units throughout and refers to U.S., U.K., and other European standards and material designations
The comprehensive reference and textbook serves as a timely, practical introduction to the principles of nanotribology and nanomechanics. Assuming some familiarity with macroscopic tribology, the book comprises chapters by internationally recognized experts, who integrate knowledge of the field from the mechanics and materials-science perspectives. They cover key measurement techniques, their applications, and theoretical modelling of interfaces, each beginning their contributions with macro- and progressing to microconcepts.
Volume III extends this handbook series to cover new developments and topics in tribology that have occurred during the past decade. It includes in-depth discussions on revolutionary magnetic bearings used in demanding applications in compressors, high-speed spindles, and aerospace equipment. Extensive coverage is given to tribology developments in office machines and in magnetic storage systems for computers. Monitoring sensors are addressed in the first chapter, followed by chapters on specific monitoring techniques for automobiles, diesels, and rotating machines. One chapter is devoted to procedures used for tracking the remaining life of lubricants. Synthetic lubricants are discussed by outstanding specialists in this rapidly developing field. Synthetics are increasingly important in widely diverse areas, including compressors using the new ozone-layer-friendly refrigerants and a variety of extreme-temperature and environmentally-sensitive applications. Water- and gas-lubricated bearings are given similar attention. The contributors also develop a new, unified coverage for fatigue life of ball and roller bearings; for design and application of porous metal bearings; for self-contained lubrication, involving oil rings, disks, and wicks; and for plastic bearings. Each of these classes of bearings are used by the millions daily throughout industry. The three-volume handbook is an essential reference to tribologists and lubrication, mechanical, and automotive engineers. It is invaluable to lubricant suppliers; bearing companies; those working in the aerospace industry; and anyone concerned with machine design, machinery wear, and maintenance.
High density digital magnetic and magneto-optical storage devices are widely used in audio, video, and data processing information technology, as well as in CAD/CAM computer systems. These widespread uses generate a continually increasing demand for both increased information storage densities and capacities, and for reduced access times. Hence, the materials engineering of high density storage media, with a high signal to noise ratio, and the associated design of sophisticated read and write heads, form the basis of major technological research. This research is especially complex because, ideally, the recorded information should be both erasable and, at the same time, secure and accessible over periods of many decades. As a result, research on these complex problems requires a multidisciplinary approach which utilizes the expertise in such widely differing fields as organic, inorganic, and solid state chemistry, metallurgy, solid state physics, electrical and mechanical engineering, and systems analysis. Often, further research specialization is necessary in each of these different disciplines. For instance, solid state physics and chemistry address the problems of crystallographic structure and phase diagram determination, magnetism, and optics, but more advanced research methods, such as high resolution electron microscopy and electronic band structure calculations, are necessary to understand the microstructure of particulate recording media or the electronic spectra of magneto-optical recording media.