Download Free Trends In Renewable Energy And Power Quality Book in PDF and EPUB Free Download. You can read online Trends In Renewable Energy And Power Quality and write the review.

This book addresses and updates the trends surrounding the potential advantages of renewable energy sources, distributed generation, energy storage, and other factors relevant to smart systems. In addition to well-consolidated topics such as photovoltaic and wind generation, new issues and solutions regarding smart grids, power electronics converters, energy management, storage systems, and innovative renewable sources exploitation techniques have been considered.
Power Quality in Modern Power Systems presents an overview of power quality problems in electrical power systems, for identifying pitfalls and applying the fundamental concepts for tackling and maintaining the electrical power quality standards in power systems. It covers the recent trends and emerging topics of power quality in large scale renewable energy integration, electric vehicle charging stations, voltage control in active distribution network and solutions to integrate large scale renewable energy into the electric grid with several case studies and real-time examples for power quality assessments and mitigations measures. This book will be a practical guide for graduate and post graduate students of electrical engineering, engineering professionals, researchers and consultants working in the area of power quality. - Explains the power quality characteristics through suitable real time measurements and simulation examples - Explanations for harmonics with various real time measurements are included - Simulation of various power quality events using PSCAD and MATLAB software - PQ disturbance detection and classification through advanced signal processing and machine learning tools - Overview about power quality problems associated with renewable energy integration, electric vehicle supply equipment's, residential systems using several case studies
Power quality is necessary for electrical systems to operate in their intended manner without any deterioration of performance. This book highlights the new emerging challenges of power quality due to the penetration of large-scale renewable energy generation technologies, the advances in nonlinear loads, the increased electricity demands in the deregulated market, and the recent requirements of smart grids that need better hierarchical design with enhanced quality, improved controllability, higher reliability, and security. Novel research that links the past, present and future of electrical power grids from a power quality perspective is also introduced. Topics include power quality definitions; frequency-domain power theory and metering of harmonic pollution responsibility; active and passive harmonic filters; shunt flexible AC transmission; power quality improvement using series FACTS; distributed generation systems; islanding scenario generation algorithm; decentralised voltage control in smart grids; techno-economic issues of power quality; economic robust programming for energy management systems; and future trends in power quality.
Renewable energy sources are currently a particularly pressing need as we all have become addicted to the usage of electrical energy. The extraction of fossil fuels has to be reduced as they are depleting at an ever-increasing rate, which is due to the increase in population and the subsequent rapid urbanization. As a consequence, research into both power-saving electrical appliances and feasible energy sources is ongoing. Thus, it is necessary that future energy sources should be reliable, renewable and eco-friendly. This book includes discussion about renewable energy resources like wind and solar power plants and a comparison between renewable and non-renewable energy sources with valid data from various case studies. In addition, the impact of fossil-fuelled power plants on the environment is discussed and real-time datum from the energy audit of solar power plant are given. The advantages of renewable resources over conventional ones are also explored in detail.
Power Quality Enhancement Using Custom Power Devices considers the structure, control and performance of series compensating DVR, the shunt DSTATCOM and the shunt with series UPQC for power quality improvement in electricity distribution. Also addressed are other power electronic devices for improving power quality in Solid State Transfer Switches and Fault Current Limiters. Applications for these technologies as they relate to compensating busses supplied by a weak line and for distributed generation connections in rural networks, are included. In depth treatment of inverters to achieve voltage support, voltage balancing, harmonic suppression and transient suppression in realistic network environments are also covered. New material on the potential for shunt and series compensation which emphasizes the importance of control design has been introduced.
Compiles current research into the analysis and design of power electronic converters for industrial applications and renewable energy systems, presenting modern and future applications of power electronics systems in the field of electrical vehicles With emphasis on the importance and long-term viability of Power Electronics for Renewable Energy this book brings together the state of the art knowledge and cutting-edge techniques in various stages of research. The topics included are not currently available for practicing professionals and aim to enable the reader to directly apply the knowledge gained to their designs. The book addresses the practical issues of current and future electric and plug-in hybrid electric vehicles (PHEVs), and focuses primarily on power electronics and motor drives based solutions for electric vehicle (EV) technologies. Propulsion system requirements and motor sizing for EVs is discussed, along with practical system sizing examples. Key EV battery technologies are explained as well as corresponding battery management issues. PHEV power system architectures and advanced power electronics intensive charging infrastructures for EVs and PHEVs are detailed. EV/PHEV interface with renewable energy is described, with practical examples. This book explores new topics for further research needed world-wide, and defines existing challenges, concerns, and selected problems that comply with international trends, standards, and programs for electric power conversion, distribution, and sustainable energy development. It will lead to the advancement of the current state-of-the art applications of power electronics for renewable energy, transportation, and industrial applications and will help add experience in the various industries and academia about the energy conversion technology and distributed energy sources. Combines state of the art global expertise to present the latest research on power electronics and its application in transportation, renewable energy and different industrial applications Offers an overview of existing technology and future trends, with discussion and analysis of different types of converters and control techniques (power converters, high performance power devices, power system, high performance control system and novel applications) Systematic explanation to provide researchers with enough background and understanding to go deeper in the topics covered in the book
This book aims to investigate emerging power quality and stability problems as well as their solutions in more-electronics power systems. The majority of methods presented here are validated through simulation and/or experimental results, thereby improving their credibility. The ultimate objective of these methods is to achieve secured operation of modern power systems with increased (up to 100%) renewable energy penetration, which is an emerging topic in this field. Readers will not only learn about the knowledge of more-electronics power systems but also the step-by-step process of how they can implement this to their research work or industrial practice. This book caters to engineers and academics working in the field of power systems with the main focus of improving power quality and stability.
Effects of environmental, economic, social, political and technical factors have led to the rapid deployment of various sources of renewable energy-based power generation. The incorporation of these generation technologies have led to the development of a broad array of new methods and tools to integrate this new form of generation into the power system network. This book, arranged into six sections, highlights various renewable energy based generation technologies, and consists a series of papers written by experts in their respective fields of specialization.The Handbook of Renewable Energy Technology will be of great practical benefit to professionals, scientists and researchers in the relevant industries, and will be of interest to those of the general public wanting to know more about renewable energy technologies.
This book presents different aspects of renewable energy integration, from the latest developments in renewable energy technologies to the currently growing smart grids. The importance of different renewable energy sources is discussed, in order to identify the advantages and challenges for each technology. The rules of connecting the renewable energy sources have also been covered along with practical examples. Since solar and wind energy are the most popular forms of renewable energy sources, this book provides the challenges of integrating these renewable generators along with some innovative solutions. As the complexity of power system operation has been raised due to the renewable energy integration, this book also includes some analysis to investigate the characteristics of power systems in a smarter way. This book is intended for those working in the area of renewable energy integration in distribution networks.
This volume represents the proceedings of the 2013 International Conference on Innovation, Communication and Engineering (ICICE 2013). This conference was organized by the China University of Petroleum (Huadong/East China) and the Taiwanese Institute of Knowledge Innovation, and was held in Qingdao, Shandong, P.R. China, October 26 - November 1, 20