Download Free Traveling Wave Analysis Of Partial Differential Equations Book in PDF and EPUB Free Download. You can read online Traveling Wave Analysis Of Partial Differential Equations and write the review.

Although the Partial Differential Equations (PDE) models that are now studied are usually beyond traditional mathematical analysis, the numerical methods that are being developed and used require testing and validation. This is often done with PDEs that have known, exact, analytical solutions. The development of analytical solutions is also an active area of research, with many advances being reported recently, particularly traveling wave solutions for nonlinear evolutionary PDEs. Thus, the current development of analytical solutions directly supports the development of numerical methods by providing a spectrum of test problems that can be used to evaluate numerical methods. This book surveys some of these new developments in analytical and numerical methods, and relates the two through a series of PDE examples. The PDEs that have been selected are largely "named'' since they carry the names of their original contributors. These names usually signify that the PDEs are widely recognized and used in many application areas. The authors' intention is to provide a set of numerical and analytical methods based on the concept of a traveling wave, with a central feature of conversion of the PDEs to ODEs. The Matlab and Maple software will be available for download from this website shortly. www.pdecomp.net - Includes a spectrum of applications in science, engineering, applied mathematics - Presents a combination of numerical and analytical methods - Provides transportable computer codes in Matlab and Maple
An accessible yet rigorous introduction to partial differential equations This textbook provides beginning graduate students and advanced undergraduates with an accessible introduction to the rich subject of partial differential equations (PDEs). It presents a rigorous and clear explanation of the more elementary theoretical aspects of PDEs, while also drawing connections to deeper analysis and applications. The book serves as a needed bridge between basic undergraduate texts and more advanced books that require a significant background in functional analysis. Topics include first order equations and the method of characteristics, second order linear equations, wave and heat equations, Laplace and Poisson equations, and separation of variables. The book also covers fundamental solutions, Green's functions and distributions, beginning functional analysis applied to elliptic PDEs, traveling wave solutions of selected parabolic PDEs, and scalar conservation laws and systems of hyperbolic PDEs. Provides an accessible yet rigorous introduction to partial differential equations Draws connections to advanced topics in analysis Covers applications to continuum mechanics An electronic solutions manual is available only to professors An online illustration package is available to professors
Our understanding of the fundamental processes of the natural world is based to a large extent on partial differential equations (PDEs). The second edition of Partial Differential Equations provides an introduction to the basic properties of PDEs and the ideas and techniques that have proven useful in analyzing them. It provides the student a broad perspective on the subject, illustrates the incredibly rich variety of phenomena encompassed by it, and imparts a working knowledge of the most important techniques of analysis of the solutions of the equations. In this book mathematical jargon is minimized. Our focus is on the three most classical PDEs: the wave, heat and Laplace equations. Advanced concepts are introduced frequently but with the least possible technicalities. The book is flexibly designed for juniors, seniors or beginning graduate students in science, engineering or mathematics.
"Partial Differential Equations and Solitary Waves Theory" is a self-contained book divided into two parts: Part I is a coherent survey bringing together newly developed methods for solving PDEs. While some traditional techniques are presented, this part does not require thorough understanding of abstract theories or compact concepts. Well-selected worked examples and exercises shall guide the reader through the text. Part II provides an extensive exposition of the solitary waves theory. This part handles nonlinear evolution equations by methods such as Hirota’s bilinear method or the tanh-coth method. A self-contained treatment is presented to discuss complete integrability of a wide class of nonlinear equations. This part presents in an accessible manner a systematic presentation of solitons, multi-soliton solutions, kinks, peakons, cuspons, and compactons. While the whole book can be used as a text for advanced undergraduate and graduate students in applied mathematics, physics and engineering, Part II will be most useful for graduate students and researchers in mathematics, engineering, and other related fields. Dr. Abdul-Majid Wazwaz is a Professor of Mathematics at Saint Xavier University, Chicago, Illinois, USA.
Presents numerical methods and computer code in Matlab for the solution of ODEs and PDEs with detailed line-by-line discussion.
This monograph has grown out of research we started in 1987, although the foun dations were laid in the 1970's when both of us were working on our doctoral theses, trying to generalize the now classic paper of Oleinik, Kalashnikov and Chzhou on nonlinear degenerate diffusion. Brian worked under the guidance of Bert Peletier at the University of Sussex in Brighton, England, and, later at Delft University of Technology in the Netherlands on extending the earlier mathematics to include nonlinear convection; while Robert worked at Lomonosov State Univer sity in Moscow under the supervision of Anatolii Kalashnikov on generalizing the earlier mathematics to include nonlinear absorption. We first met at a conference held in Rome in 1985. In 1987 we met again in Madrid at the invitation of Ildefonso Diaz, where we were both staying at 'La Residencia'. As providence would have it, the University 'Complutense' closed down during this visit in response to student demonstra tions, and, we were very much left to our own devices. It was natural that we should gravitate to a research topic of common interest. This turned out to be the characterization of the phenomenon of finite speed of propagation for nonlin ear reaction-convection-diffusion equations. Brian had just completed some work on this topic for nonlinear diffusion-convection, while Robert had earlier done the same for nonlinear diffusion-absorption. There was no question but that we bundle our efforts on the general situation.
The book is intended as an advanced undergraduate or first-year graduate course for students from various disciplines, including applied mathematics, physics and engineering. It has evolved from courses offered on partial differential equations (PDEs) over the last several years at the Politecnico di Milano. These courses had a twofold purpose: on the one hand, to teach students to appreciate the interplay between theory and modeling in problems arising in the applied sciences, and on the other to provide them with a solid theoretical background in numerical methods, such as finite elements. Accordingly, this textbook is divided into two parts. The first part, chapters 2 to 5, is more elementary in nature and focuses on developing and studying basic problems from the macro-areas of diffusion, propagation and transport, waves and vibrations. In turn the second part, chapters 6 to 11, concentrates on the development of Hilbert spaces methods for the variational formulation and the analysis of (mainly) linear boundary and initial-boundary value problems.
The book presents the theory of diffusion-reaction equations starting from the Volterra-Lotka systems developed in the eighties for Dirichlet boundary conditions. It uses the analysis of applicable systems of partial differential equations as a starting point for studying upper-lower solutions, bifurcation, degree theory and other nonlinear methods. It also illustrates the use of semigroup, stability theorems and W2ptheory. Introductory explanations are included in the appendices for non-expert readers.The first chapter covers a wide range of steady-state and stability results involving prey-predator, competing and cooperating species under strong or weak interactions. Many diagrams are included to easily understand the description of the range of parameters for coexistence. The book provides a comprehensive presentation of topics developed by numerous researchers. Large complex systems are introduced for modern research in ecology, medicine and engineering.Chapter 3 combines the theories of earlier chapters with the optimal control of systems involving resource management and fission reactors. This is the first book to present such topics at research level. Chapter 4 considers persistence, cross-diffusion, and boundary induced blow-up, etc. The book also covers traveling or systems of waves, coupled Navier-Stokes and Maxwell systems, and fluid equations of plasma display. These should be of interest to life and physical scientists.
The book is devoted to recent developments in the theory of fractional calculus and its applications. Particular attention is paid to the applicability of this currently popular research field in various branches of pure and applied mathematics. In particular, the book focuses on the more recent results in mathematical physics, engineering applications, theoretical and applied physics as quantum mechanics, signal analysis, and in those relevant research fields where nonlinear dynamics occurs and several tools of nonlinear analysis are required. Dynamical processes and dynamical systems of fractional order attract researchers from many areas of sciences and technologies, ranging from mathematics and physics to computer science.