Download Free Transverse Spin Observables In Hadron Hadron And Hadron Nucleus Collisions Book in PDF and EPUB Free Download. You can read online Transverse Spin Observables In Hadron Hadron And Hadron Nucleus Collisions and write the review.

This book is indexed in Chemical Abstracts ServiceThis book contains proceedings of the 7-week INT program dedicated to the physics of the Electron-Ion Collider (EIC), the world's first polarized electron-nucleon (ep) and electron-nucleus (eA) collider to be constructed in the United States. The 2015 NSAC Long Range Plan recommended EIC as the 'highest priority for new facility construction following the completion of FRIB'. The primary goal of the EIC is to establish precise multi-dimensional imaging of quarks and gluons inside nucleons and nuclei. This includes (i) understanding the spatial and momentum space structure of the nucleon through the studies of TMDs (transverse-momentum-dependent parton distributions), GPD (generalized parton distributions) and the Wigner distribution; (ii) determining the partonic origin of the nucleon spin; (iii) exploring the new quantum chromodynamics (QCD) frontier of ultra-strong gluon fields, with the potential to seal the discovery of a new form of dense gluon matter predicted to exist in all nuclei and nucleons at small Bjorken x — the parton saturation.The program brought together both theorists and experimentalists from Jefferson Lab (JLab), Brookhaven National Laboratory (BNL) along with the national and international nuclear physics communities to assess and advance the EIC physics.
This book highlights the discussions by renown researchers on questions emerged during transition from the relativistic heavy-ion collider (RHIC) to the future electron ion collider (EIC). Over the past two decades, the RHIC has provided a vast amount of data over a wide range of the center of mass energies. What are the scientific priorities, after RHIC is shut down and turned to the future EIC? What should be the future focuses of the high-energy nuclear collisions? What are thermodynamic properties of quantum chromodynamics (QCD) at large baryon density? Where is the phase boundary between quark-gluon-plasma and hadronic matter at high baryon density? How does one make connections from thermodynamics learned in high-energy nuclear collisions to astrophysical topics, to name few, the inner structure of compact stars, and perhaps more interestingly, the dynamical processes of the merging of neutron stars? While most particle physicists are interested in Dark Matter, we should focus on the issues of Visible Matter! Multiple heavy-ion accelerator complexes are under construction: NICA at JINR (4 ~ 11 GeV), FAIR at GSI (2 ~ 4.9 GeV SIS100), HIAF at IMP (2 ~ 4 GeV). In addition, the heavy-ion collision has been actively discussed at the J-PARC. The book is a collective work of top researchers from the field where some of the above-mentioned basic questions will be addressed. We believe that answering those questions will certainly advance our understanding of the phase transition in early universe as well as its evolution that leads to today's world of nature.
This international conference was dedicated to the interface between nuclear and elementary particle physics. It was the thirteenth in a series initiated by T.E.O. Ericson, A. de Shalit and V. F. Weisskopf at CERN in 1963. The series provides the principal international forum for the presentation and critical examination of the main results of the experimental and theoretical research in the field of interest common to nuclear and particle physics. The topics cover the energy region where nucleons must be treated as composite particles, but quarks and gluons cannot be considered asymptotically free.PAN XIII reviews the status of the field in a delicate stage of transition: new experiments and instrumental facilities are bringing in more detailed and more accurate data on the various facets of the nuclear and subnuclear universe, but we are still far from a satisfactory and complete description of nucleons and nuclei in terms of underlying quarks and their interactions.
The Conference OC Bologna 2000: Structure of the Nucleus at the Dawn of the CenturyOCO was devoted to a discipline which has seen a strong revival of research activities in the last decade. New experimental results and theoretical developments in nuclear physics will certainly make important contributions to our knowledge and understanding of Nature's fundamental building blocks. The interest aroused by the Conference among the scientific community was clearly reflected in the large number of participants. These represented the most important nuclear physics laboratories in the world. The Conference covered five major topics of modern nuclear physics: nuclear structure, nucleus-nucleus collisions, hadron dynamics, nuclear astrophysics, and transdisciplinary and peaceful applications of nuclear science. It reviewed recent progress in the field and provided a forum for the discussion of current and future research projects. Contents: Many-Body Methods in Nuclear Structure; Hadron Dynamics: Strange Hadro-Dynamics; Mesons, Baryons, Antibaryons; Hadron Structure and Electromagnetic Probes; Nuclear Astrophysics: Theoretical Aspects of Nuclear Astrophysics; Experimental Aspects of Nuclear Astrophysics; Applications of Nuclear Physics: Fission, Spallation and Transmutation; Other Applications of Nuclear Physics. Readership: Nuclear physicists."
Understanding of protons and neutrons, or "nucleons"â€"the building blocks of atomic nucleiâ€"has advanced dramatically, both theoretically and experimentally, in the past half century. A central goal of modern nuclear physics is to understand the structure of the proton and neutron directly from the dynamics of their quarks and gluons governed by the theory of their interactions, quantum chromodynamics (QCD), and how nuclear interactions between protons and neutrons emerge from these dynamics. With deeper understanding of the quark-gluon structure of matter, scientists are poised to reach a deeper picture of these building blocks, and atomic nuclei themselves, as collective many-body systems with new emergent behavior. The development of a U.S. domestic electron-ion collider (EIC) facility has the potential to answer questions that are central to completing an understanding of atoms and integral to the agenda of nuclear physics today. This study assesses the merits and significance of the science that could be addressed by an EIC, and its importance to nuclear physics in particular and to the physical sciences in general. It evaluates the significance of the science that would be enabled by the construction of an EIC, its benefits to U.S. leadership in nuclear physics, and the benefits to other fields of science of a U.S.-based EIC.