Download Free Transversality For Piecewise Linear Manifolds Book in PDF and EPUB Free Download. You can read online Transversality For Piecewise Linear Manifolds and write the review.

The study of triangulations of topological spaces has always been at the root of geometric topology. Among the most studied triangulations are piecewise linear triangulations of high-dimensional topological manifolds. Their study culminated in the late 1960s-early 1970s in a complete classification in the work of Kirby and Siebenmann. It is this classification that we discuss in this book, including the celebrated Hauptvermutung and Triangulation Conjecture.The goal of this book is to provide a readable and well-organized exposition of the subject, which would be suitable for advanced graduate students in topology. An exposition like this is currently lacking.
Since Poincaré's time, topologists have been most concerned with three species of manifold. The most primitive of these--the TOP manifolds--remained rather mysterious until 1968, when Kirby discovered his now famous torus unfurling device. A period of rapid progress with TOP manifolds ensued, including, in 1969, Siebenmann's refutation of the Hauptvermutung and the Triangulation Conjecture. Here is the first connected account of Kirby's and Siebenmann's basic research in this area. The five sections of this book are introduced by three articles by the authors that initially appeared between 1968 and 1970. Appendices provide a full discussion of the classification of homotopy tori, including Casson's unpublished work and a consideration of periodicity in topological surgery.
The book explores the possibility of extending the notions of "Grassmannian" and "Gauss map" to the PL category. They are distinguished from "classifying space" and "classifying map" which are essentially homotopy-theoretic notions. The analogs of Grassmannian and Gauss map defined incorporate geometric and combinatorial information. Principal applications involve characteristic class theory, smoothing theory, and the existence of immersion satifying certain geometric criteria, e.g. curvature conditions. The book assumes knowledge of basic differential topology and bundle theory, including Hirsch-Gromov-Phillips theory, as well as the analogous theories for the PL category. The work should be of interest to mathematicians concerned with geometric topology, PL and PD aspects of differential geometry and the geometry of polyhedra.
The book is devoted to the qualitative study of differential equations defined by piecewise linear (PWL) vector fields, mainly continuous, and presenting two or three regions of linearity. The study focuses on the more common bifurcations that PWL differential systems can undergo, with emphasis on those leading to limit cycles. Similarities and differences with respect to their smooth counterparts are considered and highlighted. Regarding the dimensionality of the addressed problems, some general results in arbitrary dimensions are included. The manuscript mainly addresses specific aspects in PWL differential systems of dimensions 2 and 3, which are sufficinet for the analysis of basic electronic oscillators. The work is divided into three parts. The first part motivates the study of PWL differential systems as the natural next step towards dynamic complexity when starting from linear differential systems. The nomenclature and some general results for PWL systems in arbitrary dimensions are introduced. In particular, a minimal representation of PWL systems, called canonical form, is presented, as well as the closing equations, which are fundamental tools for the subsequent study of periodic orbits. The second part contains some results on PWL systems in dimension 2, both continuous and discontinuous, and both with two or three regions of linearity. In particular, the focus-center-limit cycle bifurcation and the Hopf-like bifurcation are completely described. The results obtained are then applied to the study of different electronic devices. In the third part, several results on PWL differential systems in dimension 3 are presented. In particular, the focus-center-limit cycle bifurcation is studied in systems with two and three linear regions, in the latter case with symmetry. Finally, the piecewise linear version of the Hopf-pitchfork bifurcation is introduced. The analysis also includes the study of degenerate situations. Again, the above results are applied to the study of different electronic oscillators.
Braid theory and knot theory are related via two famous results due to Alexander and Markov. Alexander's theorem states that any knot or link can be put into braid form. Markov's theorem gives necessary and sufficient conditions to conclude that two braids represent the same knot or link. Thus, one can use braid theory to study knot theory and vice versa. In this book, the author generalizes braid theory to dimension four. He develops the theory of surface braids and applies it tostudy surface links. In particular, the generalized Alexander and Markov theorems in dimension four are given. This book is the first to contain a complete proof of the generalized Markov theorem. Surface links are studied via the motion picture method, and some important techniques of this method arestudied. For surface braids, various methods to describe them are introduced and developed: the motion picture method, the chart description, the braid monodromy, and the braid system. These tools are fundamental to understanding and computing invariants of surface braids and surface links. Included is a table of knotted surfaces with a computation of Alexander polynomials. Braid techniques are extended to represent link homotopy classes. The book is geared toward a wide audience, from graduatestudents to specialists. It would make a suitable text for a graduate course and a valuable resource for researchers.
One service mathematics has rendered the human race. It has put common sense back where it belongs. It has put common sense back where it belongs, on the topmost shelf next to the dusty canister labelled discarded nonsense. Eric TBell Every picture tells a story. Advenisement for for Sloan's backache and kidney oils, 1907 The book you have in your hands as you are reading this, is a text on3-dimensional topology. It can serve as a pretty comprehensive text book on the subject. On the other hand, it frequently gets to the frontiers of current research in the topic. If pressed, I would initially classify it as a monograph, but, thanks to the over three hundred illustrations of the geometrical ideas involved, as a rather accessible one, and hence suitable for advanced classes. The style is somewhat informal; more or less like orally presented lectures, and the illustrations more than make up for all the visual aids and handwaving one has at one's command during an actual presentation.
Based on lectures to advanced undergraduate and first-year graduate students, this is a thorough, sophisticated, and modern treatment of elementary algebraic topology, essentially from a homotopy theoretic viewpoint. Author C.R.F. Maunder provides examples and exercises; and notes and references at the end of each chapter trace the historical development of the subject. Copyright © Libri GmbH. All rights reserved.
This book is an exposition of the technique of surgery on simply-connected smooth manifolds. Systematic study of differentiable manifolds using these ideas was begun by Milnor [45] and Wallace [68] and developed extensively in the last ten years. It is now possible to give a reasonably complete theory of simply-connected manifolds of dimension ~ 5 using this approach and that is what I will try to begin here. The emphasis has been placed on stating and proving the general results necessary to apply this method in various contexts. In Chapter II, these results are stated, and then applications are given to characterizing the homotopy type of differentiable manifolds and classifying manifolds within a given homotopy type. This theory was first extensively developed in Kervaire and Milnor [34] in the case of homotopy spheres, globalized by S. P. Novikov [49] and the author [6] for closed 1-connected manifolds, and extended to the bounded case by Wall [65] and Golo [23]. The thesis of Sullivan [62] reformed the theory in an elegant way in terms of classifying spaces.
A topological embedding is a homeomorphism of one space onto a subspace of another. The book analyzes how and when objects like polyhedra or manifolds embed in a given higher-dimensional manifold. The main problem is to determine when two topological embeddings of the same object are equivalent in the sense of differing only by a homeomorphism of the ambient manifold. Knot theory is the special case of spheres smoothly embedded in spheres; in this book, much more general spaces and much more general embeddings are considered. A key aspect of the main problem is taming: when is a topological embedding of a polyhedron equivalent to a piecewise linear embedding? A central theme of the book is the fundamental role played by local homotopy properties of the complement in answering this taming question. The book begins with a fresh description of the various classic examples of wild embeddings (i.e., embeddings inequivalent to piecewise linear embeddings). Engulfing, the fundamental tool of the subject, is developed next. After that, the study of embeddings is organized by codimension (the difference between the ambient dimension and the dimension of the embedded space). In all codimensions greater than two, topological embeddings of compacta are approximated by nicer embeddings, nice embeddings of polyhedra are tamed, topological embeddings of polyhedra are approximated by piecewise linear embeddings, and piecewise linear embeddings are locally unknotted. Complete details of the codimension-three proofs, including the requisite piecewise linear tools, are provided. The treatment of codimension-two embeddings includes a self-contained, elementary exposition of the algebraic invariants needed to construct counterexamples to the approximation and existence of embeddings. The treatment of codimension-one embeddings includes the locally flat approximation theorem for manifolds as well as the characterization of local flatness in terms of local homotopy properties.