Download Free Transposable Elements And Genome Evolution Book in PDF and EPUB Free Download. You can read online Transposable Elements And Genome Evolution and write the review.

Once considered merely `selfish' or `parasitic' DNA, transposable elements are today recognized as being of major biological significance. Not only are these elements a major source of mutation, they have contributed both directly and indirectly to the evolution of genome structure and function. On October 8-10, 1999, 100 molecular biologists and evolutionists representing 11 countries met on the campus of The University of Georgia in Athens for the inaugural Georgia Genetics Symposium. The topics of presentations ranged from how the elements themselves have evolved to the impact transposable elements have had on the evolution of their host genomes. The papers in this volume therefore represent state-of-the-art thinking, by leading world experts in the field, on the evolutionary significance of transposable elements.
During the last 50 years, the perception oftransposable elements (TEs) has changed considerably from selfish DNA to sequences that may contribute significantly to genome function and evolution. The recent increased interest in TEs is based on the realization that they are a major genetic component (at least 10--20%) of all organisms and a major contributor to the mutation process. It is currently estimated that 70--80% of spontaneous mutations are the result of TE-mediated insertions, deletions, or chromosomal rearrangements. Thus, it seems at least plausible that TEs may playa significant role in the adaptation and evolution of natural populations and species. The ubiquity of TEs suggests that they are an old component of genomes which have been vertically transmitted through generations over evolutionary time. However, detailed analyses carried out over the last 20 years have revealed several unusual features of TE evolution: (i) TEs can be horizontally transferred between species; (ii) TE evolutionary rates can be dramatically increased by specific inactivation processes, such as the RIP (Repeat Induced Point mutation) mechanism in fungi; (iii) TEs can influence the regulation of other TEs by insertion or deletion; (iv) different classes of TEs in even distantly related species can be remarkably similar in both structure and function.
The transposable genetic elements, or transposons, as they are now known, have had a tumultuous history. Discovered in the mid-20th century by Barbara McClintock, they were initially received with puzzlement. When their genomic abundance began to be apparent, they were categorized as "junk DNA" and acquired the label of parasites. Expanding understanding of gene and genome organization has revealed the profound extent of their impact on both. Plant Transposons and Genome Dynamics in Evolution captures and distills the voluminous research literature on plant transposable elements and seeks to assemble the big picture of how transposons shape gene structure and regulation, as well as how they sculpt genomes in evolution. Individual chapters provide concise overviews of the many flavors of plant transposons and of their roles in gene creation, gene regulation, development, genome evolution, and organismal speciation, as well as of their epigenetic regulation. This volume is essential reading for anyone working in plant genetics, epigenetics, or evolutionary biology.
These novelties, among others, are examined in this book in relation to their general significance for evolution, emphasising their human relevance.
Documents the remarkable mobility of DNA in procaryotic and eucaryotic genomes: the ability of various DNA segments to move to new sites, to invert, and to undergo deletion or amplification, generally without the extensive DNA sequence homology needed for classical recombination. Seventy contributors explore the mechanisms of these rearrangements, how they are regulated, their biological consequences, and their potential use as research tools. For students and researchers of molecular genetics. Annotation copyrighted by Book News, Inc., Portland, OR
An exploration of the raw power of genetic material to refashion itself to any purpose... Virtually all organisms contain multiple mobile DNAs that can move from place to place, and in some organisms, mobile DNA elements make up a significant portion of the genome. Mobile DNA III provides a comprehensive review of recent research, including findings suggesting the important role that mobile elements play in genome evolution and stability. Editor-in-Chief Nancy L. Craig assembled a team of multidisciplinary experts to develop this cutting-edge resource that covers the specific molecular mechanisms involved in recombination, including a detailed structural analysis of the enzymes responsible presents a detailed account of the many different recombination systems that can rearrange genomes examines the tremendous impact of mobile DNA in virtually all organisms Mobile DNA III is valuable as an in-depth supplemental reading for upper level life sciences students and as a reference for investigators exploring new biological systems. Biomedical researchers will find documentation of recent advances in understanding immune-antigen conflict between host and pathogen. It introduces biotechnicians to amazing tools for in vivo control of designer DNAs. It allows specialists to pick and choose advanced reviews of specific elements and to be drawn in by unexpected parallels and contrasts among the elements in diverse organisms. Mobile DNA III provides the most lucid reviews of these complex topics available anywhere.
"The present book is intended as a progress report on [the] synthetic approach to evolution as it applies to the plant kingdom." With this simple statement, G. Ledyard Stebbins formulated the objectives of Variation and Evolution in Plants, published in 1950, setting forth for plants what became known as the "synthetic theory of evolution" or "the modern synthesis." The pervading conceit of the book was the molding of Darwin's evolution by natural selection within the framework of rapidly advancing genetic knowledge. At the time, Variation and Evolution in Plants significantly extended the scope of the science of plants. Plants, with their unique genetic, physiological, and evolutionary features, had all but been left completely out of the synthesis until that point. Fifty years later, the National Academy of Sciences convened a colloquium to update the advances made by Stebbins. This collection of 17 papers marks the 50th anniversary of the publication of Stebbins' classic. Organized into five sections, the book covers: early evolution and the origin of cells, virus and bacterial models, protoctist models, population variation, and trends and patterns in plant evolution.
Leading experts describe in step-by-step detail their most productive transposon-based methods and strategies for studying genome structure, function, and evolution. These readily reproducible techniques cover a wide range, including mutagenesis, transgenesis, gene silencing, and molecular systematics. Among the highlights are a series of DNA hybridization methods for analyzing the distribution and dynamics of mobile DNA at the hosts' genomic level, techniques for studying LTR retrotransposons in heterologous host systems, and mutagenesis protocols for investigating gene functions in a broad range of organisms. These cutting-edge methods offer investigators powerful genetic tools for dissecting the function of a specific gene, elaborating on the mechanisms leading to genetic change and diversity, and studying the evolutionary impact of mobile DNA on the biology and evolution of organisms.
Repetitive DNA is ubiquitous in eukaryotic genomes, and, in many species, comprises the bulk of the genome. Repeats include transposable elements that can self-mobilize and disperse around the genome, and tandemly-repeated satellite DNAs that increase in copy number due to replication slippage and unequal crossing over. Despite their abundance, repetitive DNA is often ignored in genomic studies due to technical challenges in their identification, assembly, and quantification. New technologies and methods are now providing the unprecedented power to analyze repetitive DNAs across diverse taxa. Repetitive DNA is of particular interest because it can represent distinct modes of genome evolution. Some repetitive DNA forms essential genome structures, such as telomeres and centromeres, which are required for proper chromosome maintenance and segregation, whereas others form piRNA clusters that regulate transposable elements; thus, these elements are expected to evolve under purifying selection. In contrast, other repeats evolve selfishly and produce genetic conflicts with their host species that drive adaptive evolution of host defense systems. However, the majority of repeats likely accumulate in eukaryotes in the absence of selection due to mechanisms of transposition and unequal crossing over. Even these neutral repeats may indirectly influence genome evolution as they reach high abundance. In this Special Issue, the contributing authors explore these questions from a range of perspectives.
This volume covers the latest protocols designed to identify and characterize TEs in genomes, ancient or recently inserted. Additionally, this book includes a series of protocols designed to understand how host genomes act to regulate the activity of TEs, from elegant genetic mobilization assays to key biochemical methods. Finally, this book also includes chapters that describe how TEs can be used for biotechnological applications. Written for the Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Transposons and Retrotransposons: Methods and Protocols aims to ensure successful results in the further study of this vital field.