Download Free Transportation Systems And Intelligent Control Book in PDF and EPUB Free Download. You can read online Transportation Systems And Intelligent Control and write the review.

The book comprehensively discusses concepts of artificial intelligence in green transportation systems. It further covers intelligent techniques for precise modeling of complex transportation infrastructure, forecasting and predicting traffic congestion, and intelligent control techniques for maximizing performance and safety. It further provides MATLAB® programs for artificial intelligence techniques. It discusses artificial intelligence-based approaches and technologies in controlling and operating solar photovoltaic systems to generate power for electric vehicles. Highlights how different technological advancements have revolutionized the transportation system. Presents core concepts and principles of soft computing techniques in the control and management of modern transportation systems. Discusses important topics such as speed control, fuel control challenges, transport infrastructure modeling, and safety analysis. Showcases MATLAB® programs for artificial intelligence techniques. Discusses roles, implementation, and approaches of different intelligent techniques in the field of transportation systems. It will serve as an ideal text for professionals, graduate students, and academicians in the fields of electrical engineering, electronics and communication engineering, civil engineering, and computer engineering.
Presenting papers from the 2014 International Conference on Transportation Systems and Intelligent Control (ICTSIC 2014), held in Thailand, this book contains the latest research and results of scientists working in areas related to Transportation Systems and Intelligent Control. Transportation Systems and Intelligent Control exposes innovative theories, frameworks, methodologies, tools, and applications in the follow topics: Transportation Systems; Ports, Waterways, Inland Navigation, and Vessel Traffic Management; Emissions, Noise, Environment; Management of Exceptional Events: Incidents, Evacuation, Emergency Management; Security Systems; Intelligent Control; Commercial Vehicle Operations; Data Management Systems; Intelligent Vehicles; Electric Vehicle Transportation Systems; Electronic Payment Systems.
Intelligent Transportation Systems: Functional Design for Economical and Efficient Traffic Management provides practical guidance on the efficient use of resources in the design of ITS. The author explains how functional design alternatives can meet project objectives and requirements with optimal cost effectiveness and clarifies how transportation planning and traffic diversion principles relate to functional ITS device selections and equipment locations. Methodologies for translating objectives to functional device types, determining device deployment densities and determining the best placement of CCTV cameras and message signs are provided, as are models for evaluating the benefits of design alternatives based on traffic conditions. Readers will learn how to reduce recurrent congestion, improve incident clearance time in non-recurrent congestion, provide real-time incident information to motorists, and leverage transportation management center data for lane control through important new active transportation and demand management (ATDM) methods. Finally, the author examines exciting developments in connected vehicle technologies, exploring their potential to greatly improve safety, mobility and energy efficiency. This resource will greatly benefit all ITS designers and managers and is of pivotal importance for operating agencies performing evaluations to justify operational funding and system expansions.
This book presents a discussion of problems encountered in the deployment of Intelligent Transport Systems (ITS). It puts emphasis on the early tasks of designing and proofing the concept of integration of technologies in Intelligent Transport Systems. In its first part the book concentrates on the design problems of urban ITS. The second part of the book features case studies representative for the different modes of transport. These are freight transport, rail transport and aerospace transport encompassing also space stations. The book provides ideas for deployment which may be developed by scientists and engineers engaged in the design of Intelligent Transport Systems. It can also be used in the training of specialists, students and post-graduate students in universities and transport high schools.
Data Analytics for Intelligent Transportation Systems provides in-depth coverage of data-enabled methods for analyzing intelligent transportation systems that includes detailed coverage of the tools needed to implement these methods using big data analytics and other computing techniques. The book examines the major characteristics of connected transportation systems, along with the fundamental concepts of how to analyze the data they produce. It explores collecting, archiving, processing, and distributing the data, designing data infrastructures, data management and delivery systems, and the required hardware and software technologies. Users will learn how to design effective data visualizations, tactics on the planning process, and how to evaluate alternative data analytics for different connected transportation applications, along with key safety and environmental applications for both commercial and passenger vehicles, data privacy and security issues, and the role of social media data in traffic planning. - Includes case studies in each chapter that illustrate the application of concepts covered - Presents extensive coverage of existing and forthcoming intelligent transportation systems and data analytics technologies - Contains contributors from both leading academic and commercial researchers - Explains how to design effective data visualizations, tactics on the planning process, and how to evaluate alternative data analytics for different connected transportation applications
The Intelligent Transportation System (ITS) Program is a cooperative effort by government, private industry, and academia to apply advanced technology to the task of resolving the problems of surface transportation. The objective is to improve travel efficiency and mobility, enhance safety, conserve energy, provide economic benefits, and protect the environment. The current demand for mobility has exceeded the available capacity of the roadway system. Because the highway system cannot be expanded, except in minor ways, the available capacity must be used more efficiently to handle the increased demand. ITS applies advanced information processing, communication, sensing, and computer control technologies to the problems of surface transportation. Considerable research and development efforts will be required to produce these new technologies and to convert technologies developed in the defense and space programs to solve surface transportation problems. ITS has been subdivided into six interlocking technology areas. This book addresses human factors concerns for four of these areas: * Advanced Traveler Information Systems are a variety of systems that provide real time, in-vehicle information to drivers regarding navigation and route guidance, motorist services, roadway signing, and hazard warnings. * Advanced Vehicle Control Systems refer to systems that aid drivers in controlling their vehicle particularly in emergency situations and ultimately taking over some or all of the driving tasks. * Commercial Vehicle Operations address the application of ITS technologies to the special needs of commercial roadway vehicles including automated vehicle identification, location, weigh-in-motion, clearance sensing, and record keeping. * Advanced Traffic Management Systems monitor, control and manage traffic on streets and highways to reduce congestion using vehicle route diversion, automated signal timing, changeable message signs, and priority control systems. Two technical areas are not specifically addressed in individual chapters, but many aspects of them are covered in associated chapters: * Advanced Rural Transportation Systems include systems that apply ITS technologies to the special needs of rural systems and include emergency notification and response, vehicle location, and traveler information. * Advanced Public Transportation Systems enhance the effectiveness, attractiveness and economics of public transportation and include fleet management, automated fare collection, and real-time information systems.
Over the time, Intelligent Transport System (ITS) has become important for any country not only for traffic congestion management, but also for modern infrastructure and safety. Since there is a dearth of literature on this subject, this book attempts to fill the gap and provides a holistic work on ITS encompassing theory, examples and case studies on various facets in both road and railway sectors. The basic principles of various technologies used for ITS have been explained in such a manner that students from non-technical background can also comprehend them with ease. It also discusses the emerging technologies such as autonomous vehicles, electric vehicles, cooperative vehicle highway system, automated highway systems, 5G mobile technology, etc. Considering the need of huge funds required for ITS implementation, the text provides various funding options available. Conclusively, it is a unique book that contains all aspects of ITS which a student of engineering is expected to know. The book is intended as a text for postgraduate students of transportation engineering and as a reference book for professionals such as transport planners, town planners, traffic engineers, transit operators and consultants. Key Features, • ITS architecture with a number of case studies based on real-life situation • Concept of smart city, importance of advanced transport system, and applications of ITS technologies in smart cities • ITS in Rail sector—intelligent trains, train control systems and intelligent train maintenance practices • Chapter-end questions for practice and bibliography
Intelligent transport systems are on the increase. They employ a variety of technologies, from basic management systems to more advanced application systems, with information technology – including wireless communication, computational technologies, floating car data/cellular data such as sensing technologies and video vehicle detection – playing a major role. This book presents the proceedings of the 2nd International Conference on Information Technology and Intelligent Transportation Systems (ITITS 2017), held in Xi’an, People's Republic of China, in June 2017. The conference provides a platform for professionals and researchers from industry and academia to present and discuss recent advances in the field of information technology and intelligent transportation systems; organizations and researchers involved in these fields, including distinguished academics from around the world, explore theoretical and applied topics such as emergency vehicle notification systems, automatic road enforcement, collision avoidance systems and cooperative systems. ITITS 2017 received more than 200 papers from 4 countries, and the 65 accepted papers appear in this book, which will be of interest to all those involved with the development of intelligent transport systems.
Intelligent Control of Connected Plug-in Hybrid Electric Vehicles presents the development of real-time intelligent control systems for plug-in hybrid electric vehicles, which involves control-oriented modelling, controller design, and performance evaluation. The controllers outlined in the book take advantage of advances in vehicle communications technologies, such as global positioning systems, intelligent transportation systems, geographic information systems, and other on-board sensors, in order to provide look-ahead trip data. The book contains simple and efficient models and fast optimization algorithms for the devised controllers to address the challenge of real-time implementation in the design of complex control systems. Using the look-ahead trip information, the authors of the book propose intelligent optimal model-based control systems to minimize the total energy cost, for both grid-derived electricity and fuel. The multilayer intelligent control system proposed consists of trip planning, an ecological cruise controller, and a route-based energy management system. An algorithm that is designed to take advantage of previewed trip information to optimize battery depletion profiles is presented in the book. Different control strategies are compared and ways in which connecting vehicles via vehicle-to-vehicle communication can improve system performance are detailed. Intelligent Control of Connected Plug-in Hybrid Electric Vehicles is a useful source of information for postgraduate students and researchers in academic institutions participating in automotive research activities. Engineers and designers working in research and development for automotive companies will also find this book of interest. Advances in Industrial Control reports and encourages the transfer of technology in control engineering. The rapid development of control technology has an impact on all areas of the control discipline. The series offers an opportunity for researchers to present an extended exposition of new work in all aspects of industrial control.
Urban mobility is not only one of the pillars of modern economic systems, but also a key issue in the quest for equality of opportunity, once it can improve access to other services. Currently, however, there are a number of negative issues related to traffic, especially in mega-cities, such as economical issues (cost of opportunity caused by delays), environmental (externalities related to emissions of pollutants), and social (traffic accidents). Solutions to these issues are more and more closely tied to information and communication technology. Indeed, a search in the technical literature (using the keyword ``urban traffic" to filter out articles on data network traffic) retrieved the following number of articles (as of December 3, 2013): 9,443 (ACM Digital Library), 26,054 (Scopus), and 1,730,000 (Google Scholar). Moreover, articles listed in the ACM query relate to conferences as diverse as MobiCom, CHI, PADS, and AAMAS. This means that there is a big and diverse community of computer scientists and computer engineers who tackle research that is connected to the development of intelligent traffic and transportation systems. It is also possible to see that this community is growing, and that research projects are getting more and more interdisciplinary. To foster the cooperation among the involved communities, this book aims at giving a broad introduction into the basic but relevant concepts related to transportation systems, targeting researchers and practitioners from computer science and information technology. In addition, the second part of the book gives a panorama of some of the most exciting and newest technologies, originating in computer science and computer engineering, that are now being employed in projects related to car-to-car communication, interconnected vehicles, car navigation, platooning, crowd sensing and sensor networks, among others. This material will also be of interest to engineers and researchers from the traffic and transportation community.