Download Free Transportation Intelligence Book in PDF and EPUB Free Download. You can read online Transportation Intelligence and write the review.

A primary mission of the Dept. of Homeland Security (DHS) is to ¿prevent terrorist attacks within the U.S., reduce the vulnerability of the U.S. to terrorism, and minimize the damage, and assist in the recovery from terrorist attacks that do occur in the U.S.¿ Since its inception, DHS has had an intelligence component to support this mission. Following a reorganization of the DHS in 2005, a strengthened Office of Intelligence and Analysis (I&A) was established. This report provides an overview of DHSI, and examines how it is organized and supports key departmental activities to include homeland security analysis and threat warning; border security; critical infrastructure protection; and sharing of info. with, state, local, and private sector partners.
Urban mobility is not only one of the pillars of modern economic systems, but also a key issue in the quest for equality of opportunity, once it can improve access to other services. Currently, however, there are a number of negative issues related to traffic, especially in mega-cities, such as economical issues (cost of opportunity caused by delays), environmental (externalities related to emissions of pollutants), and social (traffic accidents). Solutions to these issues are more and more closely tied to information and communication technology. Indeed, a search in the technical literature (using the keyword ``urban traffic" to filter out articles on data network traffic) retrieved the following number of articles (as of December 3, 2013): 9,443 (ACM Digital Library), 26,054 (Scopus), and 1,730,000 (Google Scholar). Moreover, articles listed in the ACM query relate to conferences as diverse as MobiCom, CHI, PADS, and AAMAS. This means that there is a big and diverse community of computer scientists and computer engineers who tackle research that is connected to the development of intelligent traffic and transportation systems. It is also possible to see that this community is growing, and that research projects are getting more and more interdisciplinary. To foster the cooperation among the involved communities, this book aims at giving a broad introduction into the basic but relevant concepts related to transportation systems, targeting researchers and practitioners from computer science and information technology. In addition, the second part of the book gives a panorama of some of the most exciting and newest technologies, originating in computer science and computer engineering, that are now being employed in projects related to car-to-car communication, interconnected vehicles, car navigation, platooning, crowd sensing and sensor networks, among others. This material will also be of interest to engineers and researchers from the traffic and transportation community.
Data Analytics for Intelligent Transportation Systems provides in-depth coverage of data-enabled methods for analyzing intelligent transportation systems (ITS), including the tools needed to implement these methods using big data analytics and other computing techniques. The book examines the major characteristics of connected transportation systems, along with the fundamental concepts of how to analyze the data they produce. It explores collecting, archiving, processing, and distributing the data, designing data infrastructures, data management and delivery systems, and the required hardware and software technologies. It presents extensive coverage of existing and forthcoming intelligent transportation systems and data analytics technologies. All fundamentals/concepts presented in this book are explained in the context of ITS. Users will learn everything from the basics of different ITS data types and characteristics to how to evaluate alternative data analytics for different ITS applications. They will discover how to design effective data visualizations, tactics on the planning process, and how to evaluate alternative data analytics for different connected transportation applications, along with key safety and environmental applications for both commercial and passenger vehicles, data privacy and security issues, and the role of social media data in traffic planning. Data Analytics for Intelligent Transportation Systems will prepare an educated ITS workforce and tool builders to make the vision for safe, reliable, and environmentally sustainable intelligent transportation systems a reality. It serves as a primary or supplemental textbook for upper-level undergraduate and graduate ITS courses and a valuable reference for ITS practitioners. - Utilizes real ITS examples to facilitate a quicker grasp of materials presented - Contains contributors from both leading academic and commercial domains - Explains how to design effective data visualizations, tactics on the planning process, and how to evaluate alternative data analytics for different connected transportation applications - Includes exercise problems in each chapter to help readers apply and master the learned fundamentals, concepts, and techniques - New to the second edition: Two new chapters on Quantum Computing in Data Analytics and Society and Environment in ITS Data Analytics
Emphasizing a sustainable and green approach, this new book presents an overview of state-of-the-art AI strategies for solving transportation challenges around the world, with a focus on traffic management, traffic safety, public transportation, urban mobility, and pollution mitigation. The book examines modern AI technologies such as IoT, cloud computing, machine learning, and neural networking in the context of fully automated transportation that meets current requirements. The volume provides an informative review of the difficulties and recent developments in smart mobility and transportation, encompassing technical, algorithmic, and social elements. The volume examines innovative service and platform concepts for future mobility. Artificial intelligence principles are examined as well as their implementation in modern hardware architecture. New machine learning issues for autonomous vehicles and fleets are investigated in the framework of artificial intelligence. In addition, the book investigates the human dynamics and social implications of future mobility concepts. Highlighting the research directions in this field, Artificial Intelligence for Future Intelligent Transportation: Smarter and Greener Infrastructure Design will be of value for researchers in cybersecurity, machine learning, data analysis, and artificial intelligence. Ethical hackers, students, and faculty will find useful information here as well.
Artificial Intelligence (AI) and Machine Learning (ML) are set to revolutionize all industries, and the Intelligent Transportation Systems (ITS) field is no exception. While ML, especially deep learning models, achieve great performance in terms of accuracy, the outcomes provided are not amenable to human scrutiny and can hardly be explained. This can be very problematic, especially for systems of a safety-critical nature such as transportation systems. Explainable AI (XAI) methods have been proposed to tackle this issue by producing human interpretable representations of machine learning models while maintaining performance. These methods hold the potential to increase public acceptance and trust in AI-based ITS. FEATURES: Provides the necessary background for newcomers to the field (both academics and interested practitioners) Presents a timely snapshot of explainable and interpretable models in ITS applications Discusses ethical, societal, and legal implications of adopting XAI in the context of ITS Identifies future research directions and open problems
New technologies and computing methodologies are now used to address the existing issues of urban traffic systems. The development of computational intelligence methods such as machine learning and deep learning, enables engineers to find innovative solutions to guide traffic in order to reduce transportation and mobility problems in urban areas. This volume, Computational Intelligence for Sustainable Transportation and Mobility, presents several computing models for intelligent transportation systems, which may hold the key to achieving sustainable development goals by optimizing traffic flow and minimizing associated risks. The book begins with the basic computational Intelligence techniques for traffic systems and explains its applications in vehicular traffic prediction, model optimization, behavior analysis, traffic density estimation, and more. The main objectives of this book are to present novel techniques developed, new technologies and computational intelligence for sustainable mobility and transportation solutions, as well as giving an understanding of some Industry 4.0 trends. Readers will learn how to apply computational intelligence techniques such as multiagent systems (MAS), whale optimization, artificial Intelligence (AI), deep neural networks (DNNs) so that they can to develop algorithms, models, and approaches for sustainable transportation operations. Key Features: - Provides an overview of machine learning models and their optimization for intelligent transportation systems in urban areas - Covers classification of traffic behavior - Demonstrates the application of artificial immune system algorithms for traffic prediction - Covers traffic density estimation using deep learning models - Covers Fog and edge computing for intelligent transportation systems - Gives an IoT and Industry 4.0 perspective about intelligent transportation systems to readers - Presents a current perspective on an urban hyperloop system for India