Download Free Transportation Forecasting And Travel Behavior Book in PDF and EPUB Free Download. You can read online Transportation Forecasting And Travel Behavior and write the review.

Forecasting Urban Travel presents in a non-mathematical way the evolution of methods, models and theories underpinning travel forecasts and policy analysis, from the early urban transportation studies of the 1950s to current applications throughout the
TRB’s National Cooperative Highway Research Program (NCHRP) Report 716: Travel Demand Forecasting: Parameters and Techniques provides guidelines on travel demand forecasting procedures and their application for helping to solve common transportation problems.
This open access book is the first to systematically introduce the principles of urban informatics and its application to every aspect of the city that involves its functioning, control, management, and future planning. It introduces new models and tools being developed to understand and implement these technologies that enable cities to function more efficiently – to become ‘smart’ and ‘sustainable’. The smart city has quickly emerged as computers have become ever smaller to the point where they can be embedded into the very fabric of the city, as well as being central to new ways in which the population can communicate and act. When cities are wired in this way, they have the potential to become sentient and responsive, generating massive streams of ‘big’ data in real time as well as providing immense opportunities for extracting new forms of urban data through crowdsourcing. This book offers a comprehensive review of the methods that form the core of urban informatics from various kinds of urban remote sensing to new approaches to machine learning and statistical modelling. It provides a detailed technical introduction to the wide array of tools information scientists need to develop the key urban analytics that are fundamental to learning about the smart city, and it outlines ways in which these tools can be used to inform design and policy so that cities can become more efficient with a greater concern for environment and equity.
The Handbook of Regional Science is a multi-volume reference work providing a state-of-the-art knowledge on regional science composed by renowned scientists in the field. The Handbook is intended to serve the academic needs of graduate students, and junior and senior scientists in regional science and related fields, with an interest in studying local and regional socio-economic issues. The multi-volume handbook seeks to cover the field of regional science comprehensively, including areas such as regional housing and labor markets, regional economic growth, innovation and regional economic development, new and evolutionary economic geography, location and interaction, the environment and natural resources, spatial analysis and geo-computation as well as spatial statistics and econometrics.
Each chapter in Equilibrium and Advanced Transportation Modelling develops a topic from basic concepts to the state-of-the-art, and beyond. All chapters relate to aspects of network equilibrium. Chapter One advocates the use of simulation models for the representation of traffic flow movements at the microscopic level. Chapter Two presents travel demand systems for generating trip matrices from activity-based models, taking into account the entire daily schedule of network users. Chapter Three examines equilibrium strategic choices adopted by the passengers of a congested transit system, carefully addressing line selection at boarding and transfer nodes. Chapter Four provides a critical appraisal of the traditional process that consists in sequentially performing the tasks of trip generation, trip distribution, mode split and assignment, and its impact on the practice of transportation planning. Chapter Five gives an insightful overview of stochastic assignment models, both in the static and dynamic cases. Chapters Six and Seven investigate the setting of tolls to improve traffic flow conditions in a congested transportation network. Chapter Eight provides a unifying framework for the analysis of multicriteria assignment models. In this chapter, available algorithms are summarized and an econometric perspective on the estimation of heterogeneous preferences is given. Chapter Nine surveys the use of hyperpaths in operations research and proposes a new paradigm of equilibrium in a capacitated network, with an application to transit assignment. Chapter Ten analyzes the transient states of a system moving towards equilibrium, using the mathematical framework of projected dynamical systems. Chapter Eleven discusses an in-depth survey of algorithms for solving shortest path problems, which are pervasive to any equilibrium algorithm. The chapter devotes special attention to the computation of dynamic shortest paths and to shortest hyperpaths. The final chapter considers operations research tools for reducing traffic congestion, in particular introducing an algorithm for solving a signal-setting problem formulated as a bilevel program.
Modeling of Transport Demand explains the mechanisms of transport demand, from analysis to calculation and forecasting. Packed with strategies for forecasting future demand for all transport modes, the book helps readers assess the validity and accuracy of demand forecasts. Forecasting and evaluating transport demand is an essential task of transport professionals and researchers that affects the design, extension, operation, and maintenance of all transport infrastructures. Accurate demand forecasts are necessary for companies and government entities when planning future fleet size, human resource needs, revenues, expenses, and budgets. The operational and planning skills provided in Modeling of Transport Demand help readers solve the problems they face on a daily basis. Modeling of Transport Demand is written for researchers, professionals, undergraduate and graduate students at every stage in their careers, from novice to expert. The book assists those tasked with constructing qualitative models (based on executive judgment, Delphi, scenario writing, survey methods) or quantitative ones (based on statistical, time series, econometric, gravity, artificial neural network, and fuzzy methods) in choosing the most suitable solution for all types of transport applications. - Presents the most recent and relevant findings and research - both at theoretical and practical levels - of transport demand - Provides a theoretical analysis and formulations that are clearly presented for ease of understanding - Covers analysis for all modes of transportation - Includes case studies that present the most appropriate formulas and methods for finding solutions and evaluating results
The Evolving Impacts of ICT on Activities and Travel Behavior, Volume Three in the Advances in Transport Policy and Planning series, assesses both successful and unsuccessful practices and policies from around the world on the topic. This new volume highlights ICT as a Resilient Travel Behavior Alternative; The Past, Present and Future of Travel Time Use; The Intersection of Transportation and Telecommunications in Demand Forecasting and Traffic Management; International Journey Planning System to Welcoming MaaS; An Empirical Analysis of the Relationship Between Mobile Internet Usage and Activity-Travel Behavior; Travel Time Perception and Time Use in an Era of Automated Driving, and more.
Discrete Choice Analysis presents these results in such a way that they are fully accessible to the range of students and professionals who are involved in modelling demand and consumer behavior in general or specifically in transportation - whether from the point of view of the design of transit systems, urban and transport economics, public policy, operations research, or systems management and planning. The methods of discrete choice analysis and their applications in the modelling of transportation systems constitute a comparatively new field that has largely evolved over the past 15 years. Since its inception, however, the field has developed rapidly, and this is the first text and reference work to cover the material systematically, bringing together the scattered and often inaccessible results for graduate students and professionals. Discrete Choice Analysis presents these results in such a way that they are fully accessible to the range of students and professionals who are involved in modelling demand and consumer behavior in general or specifically in transportation - whether from the point of view of the design of transit systems, urban and transport economics, public policy, operations research, or systems management and planning. The introductory chapter presents the background of discrete choice analysis and context of transportation demand forecasting. Subsequent chapters cover, among other topics, the theories of individual choice behavior, binary and multinomial choice models, aggregate forecasting techniques, estimation methods, tests used in the process of model development, sampling theory, the nested-logit model, and systems of models. Discrete Choice Analysis is ninth in the MIT Press Series in Transportation Studies, edited by Marvin Manheim.