Download Free Transportation Energy Book in PDF and EPUB Free Download. You can read online Transportation Energy and write the review.

Transportation, Energy Use and Environmental Impacts shows researchers, students and professionals the important connection between transportation planning, energy use and emissions. The book examines the major transportation activities, components, systems and subsystems by mode. It closely explores the resulting environmental impacts from transport planning, construction and the decommissioning of transportation systems. It discusses transportation planning procedures from an energy use standpoint, offering guidelines to make transportation more energy consumption efficient. Other sections cover propulsion and energy use systems, focusing on road transportation, railway, waterway, pipeline, air, air pollutants, greenhouse gas emissions, and more.
The industrial age of energy and transportation will be over by 2030. Maybe before. Exponentially improving technologies such as solar, electric vehicles, and autonomous (self-driving) cars will disrupt and sweep away the energy and transportation industries as we know it. The same Silicon Valley ecosystem that created bit-based technologies that have disrupted atom-based industries is now creating bit- and electron-based technologies that will disrupt atom-based energy industries. Clean Disruption projections (based on technology cost curves, business model innovation as well as product innovation) show that by 2030: - All new energy will be provided by solar or wind. - All new mass-market vehicles will be electric. - All of these vehicles will be autonomous (self-driving) or semi-autonomous. - The new car market will shrink by 80%. - Even assuming that EVs don't kill the gasoline car by 2030, the self-driving car will shrink the new car market by 80%. - Gasoline will be obsolete. Nuclear is already obsolete. - Up to 80% of highways will be redundant. - Up to 80% of parking spaces will be redundant. - The concept of individual car ownership will be obsolete. - The Car Insurance industry will be disrupted. The Stone Age did not end because we ran out of rocks. It ended because a disruptive technology ushered in the Bronze Age. The era of centralized, command-and-control, extraction-resource-based energy sources (oil, gas, coal and nuclear) will not end because we run out of petroleum, natural gas, coal, or uranium. It will end because these energy sources, the business models they employ, and the products that sustain them will be disrupted by superior technologies, product architectures, and business models. This is a technology-based disruption reminiscent of how the cell phone, Internet, and personal computer swept away industries such as landline telephony, publishing, and mainframe computers. Just like those technology disruptions flipped the architecture of information and brought abundant, cheap and participatory information, the clean disruption will flip the architecture of energy and bring abundant, cheap and participatory energy. Just like those previous technology disruptions, the Clean Disruption is inevitable and it will be swift.
In lively and engaging language, this book describes our dependence on freight transport and its vulnerability to diminishing supplies and high prices of oil. Ships, trucks, and trains are the backbone of civilization, hauling the goods that fulfill our every need and desire. Their powerful, highly-efficient diesel combustion engines are exquisitely fine-tuned to burn petroleum-based diesel fuel. These engines and the fuels that fire them have been among the most transformative yet disruptive technologies on the planet. Although this transportation revolution has allowed many of us to fill our homes with global goods even a past emperor would envy, our era of abundance, and the freight transport system in particular, is predicated on the affordability and high energy density of a single fuel, oil. This book explores alternatives to this finite resource including other liquid fuels, truck and locomotive batteries and utility-scale energy storage technology, and various forms of renewable electricity to support electrified transport. Transportation also must adapt to other challenges: Threats from climate change, financial busts, supply-chain failure, and transportation infrastructure decay. Robert Hirsch, who wrote the “Peaking of World Oil Production” report for the U.S. Department of Energy in 2005, said that planning for peak world production must start at least 10, if not 20 years ahead of time. What little planning exists focuses mainly on how to accommodate 30 percent more economic growth while averting climate change, ignoring the possibility that we are at, or near, the end of growth. Taken for granted, the modern transportation system will not endure forever. The time is now to take a realistic and critical look at the choices ahead, and how the future of transportation may unfold.
Transport and Energy Research: A Behavioral Perspective deals with the transport issues associated with energy from a behavioral perspective in an interdisciplinary and systematic way. Existing transport and energy research has focused on technologies and energy efficiency; however, more efficient technologies do not necessarily lead to energy reduction. Unfortunately, very limited behavioral research can be found in the literature. This book covers major transport modes in major countries. It emphasizes the importance of researching the behaviors of not only transport and energy service users, but also transport and energy service providers, policy makers, organizations, company managers, and other stakeholders who are involved in and/or affected by transport and energy policies. It not only overviews the history of relevant research and presents new developments but also extensively discusses the future research issues. Various findings are summarized for reducing energy consumption from a behavioral perspective. This book provides readers with behavioral insights into more effective policymaking. Behavioral interventions are recommended as a key policy instrument for reducing energy consumption in a sustainable way. It provides policy makers with comprehensive insights into making more effective policies over the whole process of policymaking. The book can serve as a handbook for researchers and a textbook for graduate students in the fields of transport, energy, environment, planning, public policy, behavioral studies, and so on. - Examines transport and domestics issues associated with energy from a behavioral perspective in both an interdisciplinary and comprehensive way - Offers an overview of current relevant research and the most recent developments - Provides rich information about future research trends and innovative insights into effective policymaking
Sustainable mobility is a highly complex problem as it is affected by the interactions between socio-economic, environmental, technological and political issues. Energy, Transport, & the Environment: Addressing the Sustainable Mobility Paradigm brings together leading figures from business, academia and governments to address the challenges and opportunities involved in working towards sustainable mobility. Key thinkers and decision makers approach topics and debates including: · energy security and resource scarcity · greenhouse gas and pollutant emissions · urban planning, transport systems and their management · governance and finance of transformation · the threats of terrorism and climate change to our transport systems. Introduced by a preface from U.S. Secretary Steven Chu and an outline by the editors, Dr Oliver Inderwildi and Sir David King, Energy, Transport, & the Environment is divided into six sections. These sections address and explore the challenges and opportunities for energy supply, road transport, urban mobility, aviation, sea and rail, as well as finance and economics in transport. Possible solutions, ranging from alternative fuels to advanced urban planning and policy levers, will be examined in order to deepen the understanding of currently proposed solutions within the political realities of the dominating economic areas. The result of this detailed investigation is an integrated view of sustainable transport for both people and freight, making Energy, Transport, & the Environment key reading for researchers, decision makers and policy experts across the public and private sectors.
The electric vehicle market has been gradually gaining prominence in the world due to the rise in pollution levels caused by traditional IC engine-based vehicles. The advantages of electric vehicles are multi-pronged in terms of cost, energy efficiency, and environmental impact. The running and maintenance cost are considerably less than traditional models. The harmful exhaust emissions are reduced, besides the greenhouse gas emissions, when the electric vehicle is supplied from a renewable energy source. However, apart from some Western nations, many developing and underdeveloped countries have yet to take up this initiative. This lack of enthusiasm has been primarily attributed to the capital investment required for charging infrastructure and the slow transition of energy generation from the fossil fuel to the renewable energy format. Currently, there are very few charging stations, and the construction of the same needs to be ramped up to supplement the growth of electric vehicles. Grid integration issues also crop up when the electric vehicle is used to either do supply addition to or draw power from the grid. These problems need to be fixed at all the levels to enhance the future of energy efficient transportation. Electric Vehicles and the Future of Energy Efficient Transportation explores the growth and adoption of electric vehicles for the purpose of sustainable transportation and presents a critical analysis in terms of the economics, technology, and environmental perspectives of electric vehicles. The chapters cover the benefits and limitations of electric vehicles, techno-economic feasibility of the technologies being developed, and the impact this has on society. Specific points of discussion include electric vehicle architecture, wireless power transfer, battery management, and renewable resources. This book is of interest for individuals in the automotive sector and allied industries, policymakers, practitioners, engineers, technicians, researchers, academicians, and students looking for updated information on the technology, economics, policy, and environmental aspects of electric vehicles.
Scientists and engineers are nowadays faced with the problem of optimizing complex systems subject to constraints from, ecology, economics, and thermodynamics. It is chiefly to the last of these that this volume is addressed. Intended for physicists, chemists, and engineers, the book uses examples from solar, thermal, mechanical, chemical, and environmental engineering to focus on the use of thermodynamic criteria for optimizing energy conversion and transmission. The early chapters centre on solar energy conversion, the second section discusses the transfer and conversion of chemical energy, while the concluding chapters deal with geometric methods in thermodynamics.
Compiles current research into the analysis and design of power electronic converters for industrial applications and renewable energy systems, presenting modern and future applications of power electronics systems in the field of electrical vehicles With emphasis on the importance and long-term viability of Power Electronics for Renewable Energy this book brings together the state of the art knowledge and cutting-edge techniques in various stages of research. The topics included are not currently available for practicing professionals and aim to enable the reader to directly apply the knowledge gained to their designs. The book addresses the practical issues of current and future electric and plug-in hybrid electric vehicles (PHEVs), and focuses primarily on power electronics and motor drives based solutions for electric vehicle (EV) technologies. Propulsion system requirements and motor sizing for EVs is discussed, along with practical system sizing examples. Key EV battery technologies are explained as well as corresponding battery management issues. PHEV power system architectures and advanced power electronics intensive charging infrastructures for EVs and PHEVs are detailed. EV/PHEV interface with renewable energy is described, with practical examples. This book explores new topics for further research needed world-wide, and defines existing challenges, concerns, and selected problems that comply with international trends, standards, and programs for electric power conversion, distribution, and sustainable energy development. It will lead to the advancement of the current state-of-the art applications of power electronics for renewable energy, transportation, and industrial applications and will help add experience in the various industries and academia about the energy conversion technology and distributed energy sources. Combines state of the art global expertise to present the latest research on power electronics and its application in transportation, renewable energy and different industrial applications Offers an overview of existing technology and future trends, with discussion and analysis of different types of converters and control techniques (power converters, high performance power devices, power system, high performance control system and novel applications) Systematic explanation to provide researchers with enough background and understanding to go deeper in the topics covered in the book
This is a graduate level textbook in nanoscale heat transfer and energy conversion that can also be used as a reference for researchers in the developing field of nanoengineering. It provides a comprehensive overview of microscale heat transfer, focusing on thermal energy storage and transport. Chen broadens the readership by incorporating results from related disciplines, from the point of view of thermal energy storage and transport, and presents related topics on the transport of electrons, phonons, photons, and molecules. This book is part of the MIT-Pappalardo Series in Mechanical Engineering.