Download Free Transport Properties Of Non Newtonian Nanofluids And Applications Book in PDF and EPUB Free Download. You can read online Transport Properties Of Non Newtonian Nanofluids And Applications and write the review.

This volume offers a comprehensive examination of the subject of heat and mass transfer with nanofluids as well as a critical review of the past and recent research projects in this area. Emphasis is placed on the fundamentals of the transport processes using particle-fluid suspensions, such as nanofluids. The nanofluid research is examined and presented in a holistic way using a great deal of our experience with the subjects of continuum mechanics, statistical thermodynamics, and non-equilibrium thermodynamics of transport processes. Using a thorough database, the experimental, analytical, and numerical advances of recent research in nanofluids are critically examined and connected to past research with medium and fine particles as well as to functional engineering systems. Promising applications and technological issues of heat/mass transfer system design with nanofluids are also discussed. This book also: Provides a deep scientific analysis of nanofluids using classical thermodynamics and statistical thermodynamics to explain and interpret experimental observations Presents the theory and experimental results for both thermodynamic and transport properties Examines all transport properties and transport processes as well as their relationships through the pertinent macroscopic coefficients Combines recent knowledge pertaining to nanofluids with the previous fifty years of research on particulate flows, including research on transient flow and heat transfer of particulate suspensions Conducts an holistic examination of the material from more than 500 archival publications
Nanofluids are an emerging class of heat transfer fluids that are engineered by dispersing nanoparticles in conventional fluids. They represent a promising, multidisciplinary field that has evolved over the past two decades to provide enhanced thermal features, as well as manifold applications in thermal management, energy, transportation, MEMs and biomedical fields. Fundamentals and Transport Properties of Nanofluids addresses a broad range of fundamental and applied research on nanofluids, from their preparation, stability, and thermal and rheological properties to performance characterization and advanced applications. It covers combined theoretical, experimental and numerical research to elucidate underlying mechanisms of thermal transport in nanofluids. Edited and contributed to by leading academics in thermofluids and allied fields, this book is a must have for those working in chemical, materials and mechanical engineering, nanoscience, soft matter physics and chemistry.
This text highlights how nanofluids can be used in thermal solutions across multiple industries, including electronics, energy, and manufacturing. It emphasizes the enhanced heat transfer properties of nanofluids and their potential to significantly improve the efficiency of heat exchange processes. This book discusses topics such as nanoparticle synthesis, nanofluid testing, performance enhancement using nanofluids, thermal behavior of hybrid nanofluids, Brinkman equation in nanofluids and safety considerations in nano fluid‐based systems. This book: • Discusses the recent innovation, technological development of nanofluids and explores nanoparticle synthesis and characterization for nanofluid development. • Offers a comprehensive understanding of nanofluid technology and nanofluid for aerospace application, covering diverse topics from fundamental properties to advanced research frontiers in nanofluids for thermal engineering. • Includes real‐world case studies and practical techniques that will help the readers to apply nanofluid technology in various thermal engineering scenarios. • Covers heat exchanger performance improvement with nanofluids, hybrid nanofluids, Flow of Newtonian and Non‐Newtonian hybrid Nanofluid, and oil‐based Tri‐hybrid Nanofluid. • Explains experimental techniques for nanofluid testing and validation and presents safety and environmental considerations in nanofluid‐based systems. It is primarily written for senior undergraduates, graduate students, and academic researchers in the fields of manufacturing engineering, industrial engineering, production engineering, mechanical engineering, automotive engineering, and aerospace engineering.
As an emerging research field, nanofluids have sparked immense interest from researchers around the world and have been a subject of intensive research in recent years. Because of their fascinating thermophysical properties and heat transfer performances, as well as enormous potential applications, nanofluids are considered the next generation heat transfer fluids. This book covers a wide range of topics from preparation methodology, properties, and theories to applications of nanofluids. In addition to the state-of-the-art reviews and analysis on the key areas of nanofluids including thermophysical and heat transfer properties of carbon nanotube and magnetic nanofluids, viscosity of metal oxide nanofluids and pool boiling of nanofluids, this book presents extensive experimental and theoretical research efforts on thermal conductivity, viscosity, convective heat transfer, capillary wetting, and transport properties of nanofluids. Studies on the application of nanofluids in droplet-based microfluidic technology are presented. Another new area of nanofluid-based optical engineering is explored in this book. It also introduces a new class of nanofluids named-ionanofluids. Featuring contributions from some of the leading researchers in the field, this book is a unique reference source and an invaluable guide to scientists, researchers, engineers, industrial people, graduate and postgraduate students, as well as academicians across the science and engineering disciplines.
This book provides detailed information related to nanofluids, synthesis and preparation, morphologies of nanoparticles, selection of base fluids and thermophysical properties of nanofluids. The advantage of various conduits, the improvement of the heat transfer performance of phase change materials (PCMs), and the base PCMs for diverse applications are also discussed. Crucial difficulties like stability, aggregation, and clogging of nanoparticles are detailed including factors like the size, shape, and motion of nanoparticles that influence the heat transfer performance of nanofluids. Challenges, applications, and scope of the future works in the subject area are included. Features: Covers heat transfer techniques in utilization of base fluids application of phase change materials (PCMs) Describes preparation and characterization of nanofluids and nano-based PCMs Explains how nanoscience can be utilized in heat transfer studies Reviews conventional heat transfer fluids This volume is aimed at graduate students and researchers in thermal engineering, heat transfer, material science and engineering, and heat transfer enhancement.
In recent years, nanocomposites have captured and held the attention and imagination of scientists and engineers alike. Based on the simple premise that by using a wide range of building blocks with dimensions in the nanosize region, it is possible to design and create new materials with unprecedented flexibility and improvements in their physical properties. This book contains the essence of this emerging technology, the underlying science and motivation behind the design of these structures and the future, particularly from the perspective of applications. It is intended to be a reference handbook for future scientists and hence carries the basic science and the fundamental engineering principles that lead to the fabrication and property evaluation of nanocomposite materials in different areas of materials science and technology.
Nano and Bio Heat Transfer and Fluid Flow focuses on the use of nanoparticles for bio application and bio-fluidics from an engineering perspective. It introduces the mechanisms underlying thermal and fluid interaction of nanoparticles with biological systems. This book will help readers translate theory into real world applications, such as drug delivery and lab-on-a-chip. The content covers how transport at the nano-scale differs from the macro-scale, also discussing what complications can arise in a biologic system at the nano-scale. It is ideal for students and early career researchers, engineers conducting experimental work on relevant applications, or those who develop computer models to investigate/design these systems. Content coverage includes biofluid mechanics, transport phenomena, micro/nano fluid flows, and heat transfer. - Discusses nanoparticle applications in drug delivery - Covers the engineering fundamentals of bio heat transfer and fluid flow - Explains how to simulate, analyze, and evaluate the transportation of heat and mass problems in bio-systems
Extended Non-Equilibrium Thermodynamics provides powerful tools departing not from empirical or statistical considerations but from fundamental thermodynamic laws, proposing final solutions that are readily usable and recognizable for students, researchers and industry. The book deals with methods that allow combining easily the present theory with other fields of science, such as fluid and solid mechanics, heat and mass transfer processes, electricity and thermoelectricity, and so on. Not only are such combinations facilitated, but they are incorporated into the developments in such a way that they become part of the theory. This book aims at providing for a systematic presentation of Extended Non-Equilibrium Thermodynamics in nanosystems with a high degree of applicability. Furthermore, the book deals with how physical properties of systems behave as a function of their size. Moreover, it provides for a systematic approach to understand the behavior of thermal, electrical, thermoelectric, photovoltaic and nanofluid properties in nanosystems. Experimental results are used to validate the theory, the comparison is analysed, justified and discussed, and the theory is then again used to understand better experimental observations. The new developments in this book, being recognizable in relation with familiar concepts, should make it appealing for academics and researchers to teach and apply and graduate students to use. The text in this book is intended to bring attention to how the theory can be applied to real-life applications in nanoscaled environments. Case studies, and applications of theories, are explored including thereby nanoporous systems, solar panels, nanomedicine drug permeation and properties of nanoporous scaffolds. Explores new generalized thermodynamic models Provides introductory context of Extended Non-Equilibrium Thermodynamics within classical thermodynamics, theoretical fundamentals and several applications in nanosystems Provides for a systematic approach to understand the behavior of thermal, electric, thermoelectric and viscous properties as a function of several parameters in nanosystems Includes reflections to encourage the reader to think further and put the information into context Examines future developments of new constitutive equations and theories and places them in the framework of real-life applications in the energetic and medical sectors, such as photovoltaic and thermoelectric devices, nanoporous media, drug delivery and scaffolds