Download Free Transport Processes In Nature Book in PDF and EPUB Free Download. You can read online Transport Processes In Nature and write the review.

A unique approach to the challenges of complex environmental systems Environmental Transport Processes, Second Edition provides much-needed guidance on mass transfer principles in environmental engineering. It focuses on working with uncontrolled conditions involving biological and physical systems, offering examples from diverse fields, including mass transport, kinetics, wastewater treatment, and unit processes. This new edition is fully revised and updated, incorporating modern approaches and practice problems at the end of chapters, making the Second Edition more concise, accessible, and easy to use. The book discusses the fundamentals of transport processes occurring in natural environments, with special emphasis on working at the biological physical interface. It considers transport and kinetics in terms of systems that involve microorganisms, along with in-depth coverage of particles, size spectra, and calculations for particles that can be considered either spheres or fractals. The book's treatment of particles as fractals is especially unique and the Second Edition includes a new section on exoelectrogenic biofilms. It also addresses dispersion in natural and engineered systems unlike any other book on the subject. Readers will learn to tackle with confidence complex environmental systems and make transport calculations in heterogeneous environments with mixtures of chemicals.
A conceptual framework for the study and understanding of the propagation of ecological influences in nature.
William Reiners and Kenneth Driese introduce a conceptual framework for studying the propagation of ecological influences across landscapes. They also provide examples of models that describe and predict propagation. Their volume is an excellent graduate-level introduction to the field of landscape ecology, which is concerned with the effects of spatial patterns on ecological processes, especially the movement of organisms, abiotic materials and energy across landscapes.
Readers will learn to tackle with confidence complex environmental systems and make transport calculations in heterogeneous environments with mixtures of chemicals.
The third edition of Chemical Fate and Transport in the Environment—winner of a 2015 Textbook Excellence Award (Texty) from The Text and Academic Authors Association—explains the fundamental principles of mass transport, chemical partitioning, and chemical/biological transformations in surface waters, in soil and groundwater, and in air. Each of these three major environmental media is introduced by descriptive overviews, followed by a presentation of the controlling physical, chemical, and biological processes. The text emphasizes intuitively based mathematical models for chemical transport and transformations in the environment, and serves both as a textbook for senior undergraduate and graduate courses in environmental science and engineering, and as a standard reference for environmental practitioners. Winner of a 2015 Texty Award from the Text and Academic Authors Association Includes many worked examples as well as extensive exercises at the end of each chapter Illustrates the interconnections and similarities among environmental media through its coverage of surface waters, the subsurface, and the atmosphere Written and organized concisely to map to a single-semester course Discusses and builds upon fundamental concepts, ensuring that the material is accessible to readers who do not have an extensive background in environmental science
This volume arises from an International Symposium on Flow and Transport in the Natural Environment held in Canberra, Australia, in September 1987. The meeting was hosted by the CSIRO Division of Environmental Mechanics (now the Centre for Environmental Mechanics) to mark the opening of the second stage of its headquarters, the F.C. Pye Field Environment Laboratory, twenty-one years after the opening of the first stage. Those twenty-one years have seen much progress in our understanding of the physics of the natural environment and the occasion provided an ideal opportunity to review advances in our knowledge of flow and transport phenomena, particularly with regard to flow and transport in soils, plants and the atmosphere. The contents of this volume are based very closely on the Symposium's program. Undoubtedly, our choices of topics were idiosyncratic, but we believe that those we have selected exhibit progress, innovation, and much scope for practical application. Rather than being encyclopaedic, we have sought to deal with thirteen selected topics in depth.
What happens when a chemical is released into the environment? It diffuses, disperses, adsorbs, reacts, and/or changes state. To predict and analyze this process, the mathematics of diffusion is applied to lakes, rivers, groundwater, the atmosphere, the oceans, and transport between these media. A sustainable world requires a deep understanding of the transport of chemicals through the environment and how to address and harness this process. This volume presents a succinct and in-depth introduction to this critical topic. Featuring authoritative, peer-reviewed articles from the Encyclopedia of Sustainability Science and Technology, Transport and Fate of Chemicals in the Environment represents an essential one-stop reference for an audience of researchers, undergraduate and graduate students, and industry professionals.
Despite more than 20 years of regulatory efforts, concern is widespread that ozone pollution in the lower atmosphere, or troposphere, threatens the health of humans, animals, and vegetation. This book discusses how scientific information can be used to develop more effective regulations to control ozone. Rethinking the Ozone Problem in Urban and Regional Air Pollution discusses: The latest data and analysis on how tropospheric ozone is formed. How well our measurement techniques are functioning. Deficiencies in efforts to date to control the problem. Approaches to reducing ozone precursor emissions that hold the most promise. What additional research is needed. With a wealth of technical information, the book discusses atmospheric chemistry, the role of oxides of nitrogen (NOx) and volatile organic compounds (VOCs) in ozone formation, monitoring and modeling the formation and transport processes, and the potential contribution of alternative fuels to solving the tropospheric ozone problem. The committee discusses criteria for designing more effective ozone control efforts. Because of its direct bearing on decisions to be made under the Clean Air Act, this book should be of great interest to environmental advocates, industry, and the regulatory community as well as scientists, faculty, and students.
This volume brings together contributors from several different fields of cell biology, physiology, and molecular biology. The common thread that runs through all of the work presented is that cell processes regulate the activities of membrane transport proteins and classes of membrane transport proteins participate in a number of critical cell phenomena. This volume is unique in covering three different members of the ATP Binding Cassette family (MDR, CFTR and STE6) in one place, as well as in including structure and function analysis of the sodium pump in the same forum where its cell biology is considered. The book will appeal to a broad range of biologists with interests in membrane transport, membrane biology, cell biology, and sorting.