Download Free Transport Phenomena In Polymeric Systems Book in PDF and EPUB Free Download. You can read online Transport Phenomena In Polymeric Systems and write the review.

Rheology is applied extensively in polymer, chemical, food processing, and related industries. This book combines the basic concepts and applications by presenting a balanced overview of the principles. With simplified analysis of complex problems, the textbook format provides easy understanding for both students and practicing professionals. There is no competing book with such a wide scope, including unique topics such as diffusion, flows about particles, and liquid mixing. This second edition is abundantly updated throughout. Highlights include elongational flow measurements, POM-POM modeling, diffusion and rheology of polymer nanocomposites, new results based on CFD simulations, and much more.
Transport Properties of Polymeric Membranes is an edited collection of papers that covers, in depth, many of the recent technical research accomplishments in transport characteristics through polymers and their applications. Using the transport through polymer membranes method leads to high separation efficiency, low running costs, and simple operating procedures compared to conventional separation methods. This book provides grounding in fundamentals and applications to give you all the information you need on using this method. This book discusses the different types of polymer, their blends, composites, nanocomposites and their applications in the field of liquid, gas and vapor transport. Some topics of note include modern trends and applications of polymer nanocomposites in solvent, vapor and gas transport; fundamentals and measurement techniques for gas and vapor transport in polymers; and transport properties of hydrogels. This handpicked selection of topics, and the combined expertise of contributors from global industry, academia, government and private research organizations, make this book an outstanding reference for anyone involved in the field of polymer membranes. - Presents current trends in the field of transport of liquid, gas and vapor through various polymeric systems - Features case studies focused on industrial applications of membrane technology, along with fundamentals of transport and materials - Helps readers quickly look up a particular technique to learn key points, capabilities and drawbacks
Integrating nonequilibrium thermodynamics and kinetic theory, this unique text presents a novel approach to the subject of transport phenomena.
This work introduces the fundamental background necessary to understand polymer devolatilization. It elucidates the actual mechanisms by which the devolatilization of polymer melts progresses, and discusses virtually every type of devolatilization equipment available. The work also addresses devolatilization in various geometries and types of equipment, describing the use of falling strand, slit, single-screw, co-rotating and counter-rotating twin-screw devolatilization.
Structure formation in crystallizing polymers, as occurring during processing, has not been treated so far in a coherent form. This fact explains, why this monograph is written as the ?rst book devoted to this subject. A quarter of a century ago the underdevelopment of this subject was obvious. Trial and error dominated. In fact, other apposite subjects as polymer melt rheology or heat transfer, had reached high levels. A great number of books has been devoted to them. Mold ?lling of amorphous polymers and the solidi?cation of these polymers by vitri?cation can nowadays be simulated numerically with a high degree of accuracy. In the solidi?ed sample even residual stresses and corresponding birefringence effects can accurately be 1 calculated . However, semicrystalline polymers, which form the majority of industrial po- mers, have been excluded from these considerations for good reasons. In fact, great uncertainties existed about the formation of quality determining crystalline str- tures. In particular, polyole?ns suffered from this shortcoming. In 1983 this fact instigated the polymer research group at the Johannes Kepler University in Linz to start with pertinent activities. The urgency of this kind of studies becomes evident, if advantages and hitches of these polymers are considered. 1. Versatility of processing: Injection molding into a great variety of shapes and sizes, from thin walled beakers to garden chairs, not to forget pipe and pro?le extrusion, cable coating, ?ber spinning, ?lm blowing. 2. Product qualities: Ductility, low density, good electric insulation, corrosion resistance, surface quality.
Transport and Surface Phenomena provides an overview of the key transfers taking place in reactions and explores how calculations of momentum, energy and mass transfers can help researchers develop the most appropriate, cost effective solutions to chemical problems. Beginning with a thorough overview of the nature of transport phenomena, the book goes on to explore balances in transport phenomena, including key equations for assessing balances, before concluding by outlining mathematical methods for solving the transfer equations. Drawing on the experience of its expert authors, it is an accessible introduction to the field for students, researchers and professionals working in chemical engineering. The book and is also ideal for those in related fields such as physical chemistry, energy engineering, and materials science, for whom a deeper understanding of these interactions could enhance their work. - Presents fundamental background knowledge and experimental methods in a clear and accessible style - Cements information through problems for the reader to solve, making the book ideal for learning, teaching and refreshing subject knowledge - Outlines mathematical approaches for solving energy transfers to show applications of the key equations in practice
This book provides a thorough overview of transport phenomena in complex fluids, based on the latest research results and the newest methods for their analytical prediction and numerical simulation. The respective chapters cover several topics, including: a description of the structural features of the most common complex fluids (polymer and surfactant solutions, colloidal suspensions); an introduction to the most common non-Newtonian constitutive models and their relationship with the fluid microstructure; a detailed overview of the experimental methods used to characterise the thermophysical properties, bulk rheology, and surface properties of complex fluids; a comprehensive introduction to heat, mass, and momentum transport, and to hydrodynamic instabilities in complex fluids; and an introduction to state-of-the-art numerical methods used to simulate complex fluid flows, with a focus on the Smoothed Particle Hydrodynamics (SPH) and the Dissipative Particle Dynamics (DPD) techniques. Subsequent chapters provide in-depth descriptions of phenomena such as thermal convection, elastic turbulence, mixing of complex fluids, thermophoresis, sedimentation, and non-Newtonian drops and sprays. The book addresses research scientists and professionals, engineers, R&D managers and graduate students in the fields of engineering, chemistry, biology, medicine, and the applied and fundamental sciences.