Download Free Transport Of Molecules Through And On Carbon Nanostructures Book in PDF and EPUB Free Download. You can read online Transport Of Molecules Through And On Carbon Nanostructures and write the review.

Carbon nanotubes (CNTs), discovered in 1991, have been a subject of intensive research for a wide range of applications. In the past decades, although carbon nanotubes have undergone massive research, considering the success of silicon, it has, nonetheless, been difficult to appreciate the potential influence of carbon nanotubes in current technology. The main objective of this book is therefore to give a wide variety of possible applications of carbon nanotubes in many industries related to electron device technology. This should allow the user to better appreciate the potential of these innovating nanometer sized materials. Readers of this book should have a good background on electron devices and semiconductor device physics as this book presents excellent results on possible device applications of carbon nanotubes. This book begins with an analysis on fabrication techniques, followed by a study on current models, and it presents a significant amount of work on different devices and applications available to current technology.
As one of the fastest growing fields of research in the 21st century, nanotechnology is sure to have an enormous impact on many aspects of our lives. Nanostructure Design: Methods and Protocols serves as a major reference for theoretical and experimental considerations in the design of biological and bio-inspired building blocks, the physical characterization of the formed structures, and the development of their technical applications. The chapters contributed by leading experts are divided into two sections, the first of which covers experimental aspects of nanostructure design and the second delves into computational methods. As a volume of the highly successful Methods in Molecular BiologyTM series, this collection pulls together cutting-edge protocols, written in a step-by-step, readily reproducible format certain to guide researchers to the desired results. Comprehensive and essential, Nanostructure Design: Methods and Protocols uses biological principles and vehicles on design to aid scientists in the great challenges still ahead.
Mechanical Behaviors of Carbon Nanotubes: Theoretical and Numerical Approaches presents various theoretical and numerical studies on mechanical behaviors of carbon nanotubes. The main theoretical aspects included in the book contain classical molecular dynamics simulation, atomistic-continuum theory, atomic finite element method, continuum plate, nonlocal continuum plate, and shell models. Detailed coverage is also given to structural and elastic properties, trace of large deformation, buckling and post-buckling behaviors, fracture, vibration characteristics, wave propagation, and the most promising engineering applications. This book not only illustrates the theoretical and numerical methods for analyzing the mechanical behavior of carbon nanotubes, but also contains computational results from experiments that have already taken place. - Covers various theoretical and numerical studies, giving readers a greater understanding of the mechanical behavior of carbon nanotubes - Includes multiscale methods that provide the advantages of atomistic and continuum approaches, helping readers solve complex, large-system engineering problems - Allows engineers to create more efficient carbon nanotube structures and devices
Carbon nanotubes are rolled up graphene sheets with a quasi-one-dimensional structure of nanometer-scale diameter. In these last twenty years, carbon nanotubes have attracted much attention from physicists, chemists, material scientists, and electronic device engineers because of their excellent structural, electronic, optical, chemical and mechanical properties. Carbon nanotube research, especially that aiming at industrial applications, is becoming more important. This book covers recent research topics regarding the physical, structural, chemical and electric properties on carbon nanotubes. All chapters were written by researchers who are active on the front lines. The chapters in this book will be helpful to many students, engineers and researchers working in the field of carbon nanotubes.
This book gives an accessible, detailed overview on techniques of single molecule biophysics (SMB), showing how they are applied to numerous biological problems associated with understanding the molecular mechanisms of DNA replication, transcription, and translation, as well as functioning of molecular machines. It covers major single molecule imaging and probing techniques, highlighting key strengths and limitations of each method using recent examples. The chapters begin with a discussion of single molecule fluorescence techniques followed by an overview of the atomic force microscope and its use for direct time-lapse visualization of dynamics of molecular complexes at the nanoscale, as well as applications in measurements of interactions between molecules and mechanical properties of isolated molecules and their complexes. The next chapters address magnetic tweezers and optical tweezers, including instrumentation, fundamentals of operation, and applications. A final chapter turns to nanopore transport and nanopore-based DNA sequencing technology that will play a major role in next-generation genomics and healthcare applications.
Nanomedicine is defined as the application of nanobiotechnology in clinical medicine, which is currently being used to research the pathomechanism of disease, refine molecular diagnostics, and aid in the discovery, development, and delivery of drugs. In The Handbook of Nanomedicine, Third Edition, Prof. Kewal K. Jain updates, reorganizes, and replaces information in the comprehensive second edition in order to capture the most recent advances in this dynamic field. Important components of nanomedicine such as drug delivery via nanobiotechnology and nanopharmaceuticals as well as nanooncology, where the greatest number of advances are occurring, are covered extensively. As this text is aimed at nonmedical scientists, pharmaceutical personnel, as well as physicians, descriptions of the technology involved and other medical terminology are kept as clear and simple as possible. In depth and cutting-edge, The Handbook of Nanomedicine, Third Edition informs its readers of the ever-growing field of nanomedicine, destined to play a significant role in the future of healthcare.
Today, clean natural resources, global warming, energy production, transmission and storage are the most widely discussed topics and main directions of scientific research. This book presents a collection of research contributions addressing recent achievements in nanoscience to mitigate societal challenges of environmental pollution and energy shortage. The environmental control, forensics and virtually any industry rely on the newest advances in nanoscience and sustainable technologies. Nanostructured materials explored in ultrasensitive sensors aid in global environmental monitoring, medical diagnostics and energy conversion applications. Global energy resources - solar energy, hydrogen generation and the oceans - are being effectively explored owing to the discovery of new materials for photo- and photo-electrochemical energy conversion, hydrogen generation and storage, water purification and desalination, environmental control and information processing.
Carbon Nanotubes and Graphene is a timely second edition of the original Science and Technology of Carbon Nanotubes. Updated to include expanded coverage of the preparation, purification, structural characterization, and common application areas of single- and multi-walled CNT structures, this work compares, contrasts, and, where appropriate, unitizes CNT to graphene. This much expanded second edition reference supports knowledge discovery, production of impactful carbon research, encourages transition between research fields, and aids the formation of emergent applications. New chapters encompass recent developments in the theoretical treatments of electronic and vibrational structures, and magnetic, optical, and electrical solid-state properties, providing a vital base to research. Current and potential applications of both materials, including the prospect for large-scale synthesis of graphene, biological structures, and flexible electronics, are also critically discussed. - Updated discussion of properties, structure, and morphology of biological and flexible electronic applications aids fundamental knowledge discovery - Innovative parallel focus on nanotubes and graphene enables you to learn from the successes and failures of, respectively, mature and emergent partner research disciplines - High-quality figures and tables on physical and mathematical applications expertly summarize key information – essential if you need quick, critically relevant data
The ability to study and manipulate matter at the nanoscale is the defining feature of 21st-century science. The first edition of the standard-setting Handbook of Nanoscience, Engineering, and Technology saw the field through its infancy. Reassembling the preeminent team of leading scientists and researchers from all areas of nanoscience and nanote
This book highlights all newly reported carbon nanostructures including graphene and its derivatives, carbon nanotubes, metal organic frameworks, fullerenes, nanorods, nanospheres, nano onions, porous nanoparticles, nanohorns, nanofibers and nanoribbons, nanodiamonds, graphitic carbon nitrides, carbon aerogels and hydrogels, graphdiyne and graphenylene. It presents the historical development of carbon nanostructures technologies, different types and classifications, and different fabrication and functionalization techniques, including outer/inner surface functionalization and covalent and noncovalent functionalization. This Handbook discusses the unique properties of functionalized carbon nanostructures that can be obtained by modifying their structures, composition, and surface. It gives the reader an in-depth look at the current achievements of research and practice while pointing you ahead to new possibilities in functionalizing and using carbon nanomaterials. Finally, it covers the various applications of functionalized carbon nanostructures including adsorbents, additives, active materials in energy accumulating systems (batteries, hydrogen storage systems, and supercapacitors), filtering media, catalysts or supports for catalysts, sensors or substrates for sensors, additives for polymers, ceramic composites, metal and carbon alloys, glasses, digital textiles, and composite materials.