Download Free Transport And Interactions Of Chlorides In Cement Based Materials Book in PDF and EPUB Free Download. You can read online Transport And Interactions Of Chlorides In Cement Based Materials and write the review.

Chloride-induced corrosion is the most important durability issue of reinforced concrete structures, and the prediction and prevention of chloride-induced corrosion has attracted considerable interest all over the world. Given that chloride penetrates through the concrete cover, the issues concerning its transport are crucial. These include testing methods, prediction, and the prevention of ingress. During the transport process, physical and chemical interaction occurs between chloride and cement hydrates, which in turn affects the further transport, so the transport of chloride and these interactions are closely related and underpin our understanding of chloride-induced corrosion in RC structures. This book provides in-depth discussion of chloride transport and its interaction in cement-based materials, and reviews and summarizes the state of the art. The mechanisms and testing methods for chloride transport, chemical interactions of chloride with cement hydrates, chloride binding isotherms, measurement of penetration depths, factors affecting chloride transport, and modeling of chloride transport are discussed in detail. This book serves as a reference for researchers or engineer, and a textbook for graduate students.
This book introduces fundamentals, measurements, and applications of rheology of fresh cement-based materials. The rheology of a fresh cement-based material is one of its most important aspects, characterizing its flow and deformation, and governing the mixing, placement, and casting quality of a concrete. This is the first book to bring the field together on an increasingly important topic, as new types of cement-based materials and new concrete technologies are developed. It describes measurement equipment, procedures, and data interpretation of the rheology of cement paste and concrete, as well as applications such as self-compacting concrete, pumping, and 3D printing. A range of other cement-based materials such as fiber-reinforced concrete, cemented paste backfills, and alkali-activated cement are also examined. Rheology of Fresh Cement-Based Materials serves as a reference book for researchers and engineers, and a textbook for advanced undergraduate and graduate students.
Chloride ingress in reinforced concrete induces corrosion and consequent spilling and structural weakness, and it occurs world-wide and imposes an enormous cost. Yet it can be resisted by using test methods and relevant models for service life prediction.Resistance of Concrete to Chloride Ingress sets out current understanding of chloride transport
Corrosion of Reinforced Concrete Structures: Mechanism, Monitoring and Control presents research, theory and practice on the control of corrosion in reinforced concrete structures. The title is a comprehensive guide to corrosion, its monitoring and prevention in reinforced concrete structures. It considers the essential mechanisms of corrosion, provides key monitoring techniques, describes how to effectively control corrosion, and how to establish a cyber-physical protection system. As corrosion is one of the most significant factors in the deterioration of civil engineering structures globally, and with concrete the world's most utilized manufactured material, this book highlights strategies to keep corrosion from becoming a serious threat. - Focuses on corrosion in reinforced concrete structures - Presents the mechanisms involved in the corrosion of reinforced concrete - Provides guidance on the assessment of corrosion and methods of corrosion control - Details how to set up an effective cyber-physical-system to protect reinforced concrete structures - Collates and presents the latest research from multiple disciplines on corrosion in reinforced concrete structures
Steel-reinforced concrete is used ubiquitously as a building material due to its unique combination of the high compressive strength of concrete and the high tensile strength of steel. Therefore, reinforced concrete is an ideal composite material that is used for a wide range of applications in structural engineering such as buildings, bridges, tunnels, harbor quays, foundations, tanks and pipes. To ensure durability of these structures, however, measures must be taken to prevent, diagnose and, if necessary, repair damage to the material especially due to corrosion of the steel reinforcement. The book examines the different aspects of corrosion of steel in concrete, starting from basic and essential mechanisms of the phenomenon, moving up to practical consequences for designers, contractors and owners both for new and existing reinforced and prestressed concrete structures. It covers general aspects of corrosion and protection of reinforcement, forms of attack in the presence of carbonation and chlorides, problems of hydrogen embrittlement as well as techniques of diagnosis, monitoring and repair. This second edition updates the contents with recent findings on the different topics considered and bibliographic references, with particular attention to recent European standards. This book is a self-contained treatment for civil and construction engineers, material scientists, advanced students and architects concerned with the design and maintenance of reinforced concrete structures. Readers will benefit from the knowledge, tools, and methods needed to understand corrosion in reinforced concrete and how to prevent it or keep it within acceptable limits.
This book provide a series of designs, materials, characterization and modeling, that will help create safer and stronger structures in coastal areas. The authors take a look at the different materials (porous, heterogeneous, concrete...), the moisture transfers in construction materials as well as the degradation caused by external attacks and put forth systems to monitor the structures or evaluate the performance reliability as well as degradation scenarios of coastal protection systems.
Concrete and cement-based materials must operate in increasingly aggressive aqueous environments, which may be either natural or industrial. These materials may suffer degradation in which ion addition and/or ion exchange reactions occur, leading to a breakdown of the matrix microstructure and consequent weakening. Sometimes this degradation can be extremely rapid and serious such as in acidic environments, while in other cases degradation occurs over long periods. Consequences of material failure are usually severe – adversely affecting the health and well-being of human communities and disturbing ecological balances. There are also large direct costs of maintaining and replacing deteriorated infrastructure and indirect costs from loss of production during maintenance work, which place a great burden on society. The focus of this book is on addressing issues concerning performance of cement-based materials in aggressive aqueous environments , by way of this State-of-the-Art Report. The book represents the work of many well-known and respected authors who contributed chapters or parts of chapters. Four main themes were addressed: I. Nature and kinetics of degradation and deterioration mechanisms of cement-based materials in aggressive aqueous environments, II. Modelling of deterioration in such environments, III. Test methods to assess performance of cement-based materials in such environments, and which can be used to characterise and rate relative performance and inform long term predictions, IV. Engineering implications and consequences of deterioration in aggressive aqueous environments, and engineering approaches to the problem.
The first English-language book which reviews and summarizes worldwide research advances in alkali-activated cements and concrete. Essential topics include: raw materials and their properties for the production of the two new types of binder the hydration and microstructure development of alkali-activated slag cements the mechanical properties and durability of alkali-activated slag cement and concrete other various cementing systems and their applications related standards and specifications. This respected team of authors has produced an important piece of research that will be of great interest to professionals and academics alike, enabling the production of more durable and environmentally sensitive materials.