Download Free Transition Metal Catalyzed C F Bond Formation Book in PDF and EPUB Free Download. You can read online Transition Metal Catalyzed C F Bond Formation and write the review.

Fluorine atom plays a very important role in pharmaceuticals, agricultural chemicals, and medical imaging and it has become one of the most popular area in organic chemistry. For example, in modern medicinal chemistry introducing fluorine atom could potentially improve absorption, metabolism and potency of drug candidates. As a result, methods that allow the selective and efficient formation of the carbon-fluorine bond are highly desirable. An evolving approach is the utilization of transition-metals to catalyze the nucleophilic substitution of fluoride ion. This thesis described several novel and efficient methods to generate allylic and benzylic C-F bonds using rhodium/iridium catalyst.
Contents: Kilian Muñiz: Transition Metal Catalyzed Electrophilic Halogenation of C-H bonds in alpha-Position to Carbonyl Groups; Arkadi Vigalok * and Ariela W Kaspi: Late Transition Metal-Mediated Formation of Carbon-Halogen Bonds; Paul Bichler and Jennifer A. Love*: Organometallic Approaches to Carbon-Sulfur Bond Formation; David S. Glueck: Recent Advances in Metal-Catalyzed C-P Bond Formation; Andrei N. Vedernikov: C-O Reductive Elimination from High Valent Pt and Pd Centers; Lukas Hintermann: Recent Developments in Metal-Catalyzed Additions of Oxygen Nucleophiles to Alkenes and Alkynes; Moris S. Eisen: Catalytic C-N, C-O and C-S bond formation promoted by organoactinide complexes.
The first handbook on this emerging field provides a comprehensive overview of transition metal-catalyzed coupling reactions in the presence of an oxidant. Following an introduction to the general concept and mechanism of this reaction class, the team of authors presents chapters on C-C cross-coupling reactions using organometallic partners, C-Heteroatom bond forming reactions via oxidative couplings, and C-H couplings via C-H activation. The text also covers such groundbreaking topics as recent achievements in the fields of C-C and C-X bond formation reactions as well as C-H activation involving oxidative couplings. With its novel and concise approach towards important building blocks in organic chemistry and its focus on synthetic applications, this handbook is of great interest to all synthetic chemists in academia and industry alike.
Written by an experienced editor widely acclaimed within the scientific community, this book covers everything fromo9xygen to nitrogen functionalities. From the contents: Palladium-Catalyzed Syntheses of Five-Member Saturated Heterocyclic and of Aromatic Heterodynes Palladium-Catalysis for Oxidative 1, 2-Difunctionalization of Alkenes Rhodium-Catalyzed Amination of C-H-Bonds Carbon-Heteroatom Bond Formation by RH(I)-Catalyzed Ring-Opening Reactions Transition Metal-Catalyzed Synthesis of Lactones and of Monocyclic and Fused Five-Membered Aromatic heterocycles the Formation of Carbon-Sulfur and Carbon-Selenium bonds by Substitution and Addition reactions catalyzed by Transition Metal Complexes New Reactions of Copper Acetylides Gold Catalyzed Addition of Nitrogen, Sulfur and Oxygen Nucleophiles to C-C Multiple Bonds. The result is an indispensable source of information for the Strategic Planning of the Synthetic routes for organic, catalytic and medicinal chemists, as well as chemists in industry.
Cross-coupling reactions involving C-H and C-X bond functionalisation are commonplace in natural product synthesis and natural products, therapeutic agents, biological probes, and advanced materials. Much attention has been given to understanding the mechanistic strategies used to achieve this, making this a hot topic in recent years. In this edited book, contributions from across the globe examine these strategies, with a particular focus on palladium and copper, as well as iron – an emerging element in this field. Reviewing the recent literature, the book presents an in-depth understanding of the field, guiding the reader to achieving the best synthetic strategies for aromatic functionalisation. Organic and Organometallic chemists, as well as natural product and pharmaceutical scientists, will find this an essential guide to a major transformation currently underway in synthetic chemistry.
Chapter 1. Palladium-Catalyzed Fluorination of Cyclic Vinyl Triflates: Dramatic Effect of TESCF3 as an Additive A method for the synthesis of cyclic vinyl fluorides with high levels of regiochemical fidelity has been achieved by Pd-catalysis employing a new biarylphosphine ligand and TESCF3 as a crucial additive. Five, six, and seven-membered vinyl triflate substrates, as well as a few acyclic substrates undergo the transformation successfully. The intriguing "TESCF3 effect" provided a new tool for addressing the problem of the formation of regioisomers in Pd-catalyzed fluorination reactions. Chapter 2. Mechanistic Studies on Pd-Catalyzed Fluorination of Cyclic Vinyl Triflates: Evidence for in situ Ligand Modification by TESC3 as an additive. A detailed mechanistic hypothesis for the Pd-catalyzed fluorination of cyclic vinyl triflates, and the unusual effect of TESCF3 as an additive has been developed by combined experimental and computational studies. The preference of conducting [beta]-hydrogen elimination rather than reductive elimination from the trans-LPd(vinyl)F complex, which is generated predominantly due to the trans-effect, caused the poor regioselectivity of the fluorination reaction under TESCF3-free conditions. An in situ ligand modification by trifluoromethyl anion, leading to the generation of the cis-LPd(vinyl)F complex which prefers reductive elimination rather than Phydrogen elimination, is proposed to be responsible for the improved regioselectivity of the fluorination reaction when TESCF3 was used as an additive. Chapter 3. CuH-Catalyzed Enantioselective Alkylation of Indoles with Ligand-Controlled Regiodivergence A method for the enantioselective synthesis of either NI- and C3-chiral indoles by CuH-catalysis, depending on the choice of ligand, was developed. In contrast to conventional indole functionalization in which indoles are used as nucleophiles, hydroxyindole derivatives are employed as electrophiles in this method. DFT calculations indicated that the extent to which the Cu-P bonds of the alkylcopper intermediate distort, determines the regioselectivity of the reaction.
Here, probably the most important functional group in organic chemistry is discussed in one handy volume. The monograph covers its application -- from natural products to synthetic pharmaceuticals -- detailing complex syntheses using the amino group as templates and modern techniques focussing on the introduction of the amino group. A definitive must-have for every chemist.
Chapter 1. Copper-Catalyzed Asymmetric Addition of Olefin-Derived Nucleophiles to Ketones A copper (I) catalyzed coupling olefins and ketones has been developed for the diastereo- and enantioselective generation of homopropargyl alcohols bearing vicinal stereocenters. This method allows for the generation of enantioenriched tertiary alcohols with a high degree of functional group compatibility. The utility of the process is further illustrated by a large scale synthesis with extremely low catalyst loading as well as the late stage modification of several pharmaceuticals. Chapter 2. Copper-Catalyzed Enantioselective Addition of Styrene-Derived Nucleophiles to Imines We describe the catalytic generation of amines bearing vicinal stereocenters with a moderate degree of diastereoselectivity. The stereoselective hydrocupration of an unactivated olefinic component is followed by nucleophilic addition of the organocuprate to an N-phosphinoyl protected imine. The mild and general process tolerates a broad-range of functionality, and the process was shown to be successful at a gram-scale synthesis. Chapter 3. Palladium-facilitated Regioselective Nucleophilic Fluorination of Aryl and Heteroaryl Halides. The preliminary findings regarding an aryl and heteroaryl halide fluorination process facilitated by palladium as a reagent is described. Stoichiometric studies illustrate the utility of the method in producing aryl fluorides with unprecedented regioselectivity, and preliminary studies into the fluorination of five- and six-membered heteroaryl bromides are described. Halogen atom substitution as a route to irreversible oxidative addition of aryl and heteroaryl halides is discussed. This strategy may serve to facilitate the fluorination of particularly problematic heteroaryl bromide and chloride substrates.
In the last few years a large repetoire of methods for the activation of unreactive organic functionalities and for their use in organic synthesis has been developed. In this volume, areas ranging from the activation of C-H bonds to the chemical transformation of dinitrogen are authoritatively discussed by leading experts in the field. To activate means to be able to cleave otherwise inert chemical bonds. The cleavage and formation of chemical bonds is fundamental to organic synthesis; these new activation methodologies make hitherto infeasible reactions extremely easy and create new opportunities for innovative organic transformations, for both industry and academia. This is the first book that provides a thorough and timely coverage of both inorganic and organic synthetic aspects of bond activation, thus giving a broad overview of the field and allowing both inorganic and organic chemists ready access to the methodologies involved.