Download Free Transforming Glycoscience Book in PDF and EPUB Free Download. You can read online Transforming Glycoscience and write the review.

A new focus on glycoscience, a field that explores the structures and functions of sugars, promises great advances in areas as diverse as medicine, energy generation, and materials science, this report finds. Glycans-also known as carbohydrates, saccharides, or simply as sugars-play central roles in many biological processes and have properties useful in an array of applications. However, glycans have received little attention from the research community due to a lack of tools to probe their often complex structures and properties. Transforming Glycoscience: A Roadmap for the Future presents a roadmap for transforming glycoscience from a field dominated by specialists to a widely studied and integrated discipline, which could lead to a more complete understanding of glycans and help solve key challenges in diverse fields.
A new focus on glycoscience, a field that explores the structures and functions of sugars, promises great advances in areas as diverse as medicine, energy generation, and materials science, this report finds. Glycans-also known as carbohydrates, saccharides, or simply as sugars-play central roles in many biological processes and have properties useful in an array of applications. However, glycans have received little attention from the research community due to a lack of tools to probe their often complex structures and properties. Transforming Glycoscience: A Roadmap for the Future presents a roadmap for transforming glycoscience from a field dominated by specialists to a widely studied and integrated discipline, which could lead to a more complete understanding of glycans and help solve key challenges in diverse fields.
Sugar chains (glycans) are often attached to proteins and lipids and have multiple roles in the organization and function of all organisms. "Essentials of Glycobiology" describes their biogenesis and function and offers a useful gateway to the understanding of glycans.
As a reflection of the quantum leap that has been made in the study of glycostructures, the first edition of this book has been completely revised and updated. The editors give up-to-date information on glycostructures, their chemistry and chemical biology in the form of a completely comprehensive survey. Glycostructures play highly diverse and crucial roles in a myriad of organisms and important systems in biology, physiology, medicine, bioengineering and technology. Only in recent years have the tools been developed to partly understand the highly complex functions and the chemistry behind them. While many facts remain undiscovered, this MRW has been contributed to by a large number of the world’s leading researchers in the field.
This series presents critical reviews of the present position and future trends in modern chemical research. The short and concise reports on chemistry, each written by the world’s renowned experts, are still valid and useful after 5 or 10 years.
This book presents the state of the art in glycoscience and proposes a road map for the coming decade, focusing on the potential of glycoscience research to shed light on important basic science issues and give rise to exciting new applications, especially in the field of diagnosis and therapeutics. Individual sections offer in-depth coverage of various topics relating to glycans and biopharmaceuticals, glycans in medical science and medicine, glycan technologies, glycans in food and nutrients, and glycan-related materials and their uses. In addition, the book presents an exemplary training course on glycomics and highlights educational and analytical web resources, and also includes glossaries and boxes summarizing key facts to ensure ease of understanding for non-expert readers and students. Written by more than 150 active participants in the Japan Consortium for Glycobiology and Glycotechnology (JCGG), whose goal is to promote the development of interdisciplinary glycoscience and establish a global network in the field, it is a valuable resource for students, postdocs, and researchers in the life sciences as well as for stakeholders and professionals in government, funding agencies and industry.
This book summarizes recent advances in antibody glycosylation research. Covering major topics relevant for immunoglobulin glycosylation - analytical methods, biosynthesis and regulation, modulation of effector functions - it provides new perspectives for research and development in the field of therapeutic antibodies, biomarkers, vaccinations, and immunotherapy. Glycans attached to both variable and constant regions of antibodies are known to affect the antibody conformation, stability, and effector functions. Although it focuses on immunoglobulin G (IgG), the most explored antibody in this context, and unravels the natural phenomena resulting from the mixture of IgG glycovariants present in the human body, the book also discusses other classes of human immunoglobulins, as well as immunoglobulins produced in other species and production systems. Further, it reviews the glycoanalytical methods applied to antibodies and addresses a range of less commonly explored topics, such as automatization and bioinformatics aspects of high-throughput antibody glycosylation analysis. Lastly, the book highlights application areas ranging from the ones already benefitting from antibody glycoengineering (such as monoclonal antibody production), to those still in the research stages (such as exploration of antibody glycosylation as a clinical or biological age biomarker), and the potential use of antibody glycosylation in the optimization of vaccine production and immunization protocols. Summarizing the current knowledge on the broad topic of antibody glycosylation and its therapeutic and biomarker potential, this book will appeal to a wide biomedical readership in academia and industry alike. Chapter 4 is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.
Glycans play essential roles in diverse biological and etiological processes and their structural complexity endow various functions. The glycome is the entire set of glycans produced by an individual organism. As the glycan microarray emerged, a good amount of knowledge has been obtained in understanding the functions of glycans. However, limited accessibility of glycans is a major obstacle to the functional glycomics study. Although isolation from biology samples provided some structures, the low abundance of glycans obtained and the difficulty in complete structural assignment restricted the subsequent assay. To circumvent this limitation, many synthetic strategies, including chemical, enzymatic and chemo-enzymatic ones have been developed to make libraries of structurally defined complex glycans available. The glycans provided by these techniques combined with high-throughput glycoarray techniques have broadened and deepened our understanding about functional glycomics. The aim of this book is to provide a comprehensive review of the current state of the synthetic glycome and a brief introduction of the application of the synthetic glycome in glycoarray assay. Accordingly, synthetic strategies toward generating glycans with comprehensive structures as well as the glycoarrays to unveil the glycan functions are described in this book.
In much of biology, the search for understanding the relation between structure and function is now taking place at the macromolecular level. Proteins, nucleic acids, and polysaccharides are macromolecule--polymers formed from families of simpler subunits. Because of their size and complexity, the polymers are capable of both inter- and intramolecular interactions. These interactions confer upon the polymers distinctive three-dimensional shapes. These tertiary configurations, in turn, determine the function of the macromolecule. Computers have become so inextricably involved in empirical studies of three-dimensional macromolecular structure that mathematical modeling, or theory, and experimental approaches are interrelated aspects of a single enterprise.
Glycobiology is an emerging field of studying glycans (sugars) and glycoconjugates that are essentially involved in almost all biological processes, from fine-tuning glycoprotein function to protein-protein interactions, signaling, immune response, host-pathogen interactions, etc. However, due to structural complexity of glycans and analytical challenges this exciting field was lagging behind other areas of biology. With technological advancements growing number of glycans’ functions are being discovered and the study of glycans is becoming a cutting-edge discipline in basic and clinical research. Despite recent developments in glycobiology field, many aspects of glycosylation process still remain unknown, both in a healthy human organism and in pathological states. Human glycome is dynamic and changes with physiological triggers, immune challenges and disease. Atypical glycosylation is consequently a subject of disease biomarker research, and a target for therapeutic interventions. On the other hand, properties of glycosylated biotherapeutics are predominantly determined by their glycans. The Role of Glycosylation in Health and Disease provides a comprehensive overview of types and functions of glycans in a healthy human organism as well as their role in pathophysiology of different diseases and efficiency of glycosylated biotherapeutics. Written by the experts in the field, this book aims to bring glycobiology field closer to students, researchers in life sciences and professionals in biopharmaceutical industry.