Download Free Transforming Childrens Mathematics Education Book in PDF and EPUB Free Download. You can read online Transforming Childrens Mathematics Education and write the review.

Eminent scholars from around the globe gathered to discuss how educational systems would change if the prevailing principles of constructivism were applied to three major aspects of those systems -- knowledge and learning, communication, and environment. This volume provides documentation of the proceedings of this important meeting - - the Early Childhood Action Group of the Sixth International Congress on Mathematics Education. This international assembly, representing such diverse disciplines as mathematics and math education, epistemology, philosophy, cognitive science, psycholinguistics, and science education, is the first to examine early childhood mathematics education from constructivist and international perspectives in addition to formulating recommendations for future work in the field.
With a focus on children's mathematical thinking, this second edition adds new material on the mathematical principles underlying children's strategies, a new online video that illustrates student teacher interaction, and examines the relationship between CGI and the Common Core State Standards for Mathematics.
This important new book synthesizes relevant research on the learning of mathematics from birth into the primary grades from the full range of these complementary perspectives. At the core of early math experts Julie Sarama and Douglas Clements's theoretical and empirical frameworks are learning trajectories—detailed descriptions of children’s thinking as they learn to achieve specific goals in a mathematical domain, alongside a related set of instructional tasks designed to engender those mental processes and move children through a developmental progression of levels of thinking. Rooted in basic issues of thinking, learning, and teaching, this groundbreaking body of research illuminates foundational topics on the learning of mathematics with practical and theoretical implications for all ages. Those implications are especially important in addressing equity concerns, as understanding the level of thinking of the class and the individuals within it, is key in serving the needs of all children.
"With the collaboration of a number of dedicated teachers and their students, Susan Empson and Linda Levi have produced a volume that is faithful to the basic principles of CGI while at the same time covering new ground with insight and innovation." -Thomas P. Carpenter This highly anticipated follow-up volume to the landmark Children's Mathematics: Cognitively Guided Instruction addresses the urgent need to help teachers understand and teach fraction concepts. Fractions remain one of the key stumbling blocks in math education, and here Empson and Levi lay a foundation for understanding fractions and decimals in ways that build conceptual learning. They show how the same kinds of intuitive knowledge and sense making that provides the basis for children's learning of whole number arithmetic can be extended to fractions and decimals. Just as they did in Children's Mathematics and Thinking Mathematically, Empson and Levi provide important insights into children's thinking and alternative approaches to solving problems. Three themes appear throughout the book: building meaning for fractions and decimals through discussing and solving word problems the progression of children's strategies for solving fraction word problems and equations from direct modeling through relational thinking designing instruction that capitalizes on students' relational thinking strategies to integrate algebra into teaching and learning fractions. With illuminating examples of student work, classroom vignettes, "Teacher Commentaries" from the field, sample problems and instructional guides provided in each chapter, you'll have all the tools you need to teach fractions and decimals with understanding and confidence.
Engaging Young Children in Mathematics: Standards for Early Childhood Mathematics Education brings together the combined wisdom of a diverse group of experts involved with early childhood mathematics. The book originates from the landmark 2000 Conference on Standards for Pre-kindergarten and Kindergarten Mathematics Education, attended by representatives from almost every state developing standards for young children's mathematics; federal government officials; mathematicians; mathematics educators; researchers from mathematics education, early childhood education, and psychology; curriculum developers; teachers; policymakers; and professionals from organizations such as the National Conference of Teachers of Mathematics and the National Association for the Education of Young Children. The main goal of the Conference was to work collectively to help those responsible for framing and implementing early childhood mathematics standards. Although it has its roots in the Conference, the expanded scope of the standards and recommendations covered in this book includes the full range of kindergarten to grade 2. The volume is organized into two main parts and an online appendix (http://www.gse.buffalo.edu/org/conference/). Part One, Major Themes and Recommendations, offers a framework for thinking about pre-kindergarten - grade 2 mathematics education and specific recommendations. Part Two, Elaboration of Major Themes and Recommendations, provides substantive detail regarding young students' understandings of mathematical ideas. Each Part includes five parallel subsections: "Standards in Early Childhood Education"; "Math Standards and Guidelines"; "Curriculum, Learning, Teaching, and Assessment"; "Professional Development"; and "Toward the Future: Implementation and Policy." As a whole the book: * presents comprehensive summaries of research that provide specific guidelines for standards, curriculum, and teaching; * takes the recent reports and recommendations for early childhood mathematics education to the next level; * integrates practical details and research throughout; and * provides a succinct, but thorough review of research on the topics, sequences, and learning trajectories that children can and should learn at each of their first years of life, with specific developmental guidelines that suggest appropriate content for each topic for each year from 2-year-olds to 7-year-olds. This is an indispensable volume for mathematics educators, researchers, curriculum developers, teachers and policymakers, including those who create standards, scope and sequences, and curricula for young children and professional teacher development materials, and students in mathematics education, early childhood trainers, teacher educators, and faculty in mathematics education.
The diversity of research domains and theories in the field of mathematics education has been a permanent subject of discussions from the origins of the discipline up to the present. On the one hand the diversity is regarded as a resource for rich scientific development on the other hand it gives rise to the often repeated criticism of the discipline’s lack of focus and identity. As one way of focusing on core issues of the discipline the book seeks to open up a discussion about fundamental ideas in the field of mathematics education that permeate different research domains and perspectives. The book addresses transformation as one fundamental idea in mathematics education and examines it from different perspectives. Transformations are related to knowledge, related to signs and representations of mathematics, related to concepts and ideas, and related to instruments for the learning of mathematics. The book seeks to answer the following questions: What do we know about transformations in the different domains? What kinds of transformations are crucial? How is transformation in each case conceptualized?
Selected as the Michigan Council of Teachers of Mathematics winter book club book! Rich tasks, collaborative work, number talks, problem-based learning, direct instruction...with so many possible approaches, how do we know which ones work the best? In Visible Learning for Mathematics, six acclaimed educators assert it’s not about which one—it’s about when—and show you how to design high-impact instruction so all students demonstrate more than a year’s worth of mathematics learning for a year spent in school. That’s a high bar, but with the amazing K-12 framework here, you choose the right approach at the right time, depending upon where learners are within three phases of learning: surface, deep, and transfer. This results in "visible" learning because the effect is tangible. The framework is forged out of current research in mathematics combined with John Hattie’s synthesis of more than 15 years of education research involving 300 million students. Chapter by chapter, and equipped with video clips, planning tools, rubrics, and templates, you get the inside track on which instructional strategies to use at each phase of the learning cycle: Surface learning phase: When—through carefully constructed experiences—students explore new concepts and make connections to procedural skills and vocabulary that give shape to developing conceptual understandings. Deep learning phase: When—through the solving of rich high-cognitive tasks and rigorous discussion—students make connections among conceptual ideas, form mathematical generalizations, and apply and practice procedural skills with fluency. Transfer phase: When students can independently think through more complex mathematics, and can plan, investigate, and elaborate as they apply what they know to new mathematical situations. To equip students for higher-level mathematics learning, we have to be clear about where students are, where they need to go, and what it looks like when they get there. Visible Learning for Math brings about powerful, precision teaching for K-12 through intentionally designed guided, collaborative, and independent learning.
Demonstrates the potential for literature in learnersin a variety of mathematical investigations.
Children are already learning at birth, and they develop and learn at a rapid pace in their early years. This provides a critical foundation for lifelong progress, and the adults who provide for the care and the education of young children bear a great responsibility for their health, development, and learning. Despite the fact that they share the same objective - to nurture young children and secure their future success - the various practitioners who contribute to the care and the education of children from birth through age 8 are not acknowledged as a workforce unified by the common knowledge and competencies needed to do their jobs well. Transforming the Workforce for Children Birth Through Age 8 explores the science of child development, particularly looking at implications for the professionals who work with children. This report examines the current capacities and practices of the workforce, the settings in which they work, the policies and infrastructure that set qualifications and provide professional learning, and the government agencies and other funders who support and oversee these systems. This book then makes recommendations to improve the quality of professional practice and the practice environment for care and education professionals. These detailed recommendations create a blueprint for action that builds on a unifying foundation of child development and early learning, shared knowledge and competencies for care and education professionals, and principles for effective professional learning. Young children thrive and learn best when they have secure, positive relationships with adults who are knowledgeable about how to support their development and learning and are responsive to their individual progress. Transforming the Workforce for Children Birth Through Age 8 offers guidance on system changes to improve the quality of professional practice, specific actions to improve professional learning systems and workforce development, and research to continue to build the knowledge base in ways that will directly advance and inform future actions. The recommendations of this book provide an opportunity to improve the quality of the care and the education that children receive, and ultimately improve outcomes for children.
This book builds on the Teachers Empowered to Advance Change in Mathematics (TEACH Math) project, which was an initiative that sought to develop a new generation of preK-8 mathematics teachers to connect mathematics, children’s mathematical thinking, and community and family knowledge in mathematics instruction – or what we have come to call children’s multiple mathematical knowledge bases in mathematics instruction, with an explicit focus on equity. Much of the work involved in the TEACH Math project included the development of three instructional modules for preK-8 mathematics methods courses to support the project’s goals. These activities were used and refined over eight semesters, and in Fall 2014 shared at a dissemination conference with other mathematics teacher educators from a variety of universities across the United States. Chapter contributions represent diverse program and geographical contexts and teach prospective and practicing teachers from a variety of socioeconomic and ethnic backgrounds, in particular providing accounts of supports, challenges, and tensions in implementing equity-based mathematics teacher education. The chapters supply rich evidence and illustrative examples of how other mathematics teacher educators and professional developers might make the modules work for their unique practices, courses, workshops, and prospective teachers/teachers. It promises to be an important resource for offering guidance and examples to those working with prospective teachers of mathematics who want to create positive, culturally responsive, and equity-based mathematics experiences for our nation’s youth.