Download Free Transformation Of Knowledge Information And Data Theory And Applications Book in PDF and EPUB Free Download. You can read online Transformation Of Knowledge Information And Data Theory And Applications and write the review.

This book considers transformations within the context of computing science and information science, as they are essential in changing organizations. It not only considers transformations of structured models, rather, the transformation of instances (i.e. the actual contents of those structures) is addressed as well.
This set compiles more than 240 chapters from the world's leading experts to provide a foundational body of research to drive further evolution and innovation of these next-generation technologies and their applications, of which scientific, technological, and commercial communities have only begun to scratch the surface.
With the recent and enormous increase in the amount of available data sets of all kinds, applying effective and efficient techniques for analyzing and extracting information from that data has become a crucial task. Intelligent Data Analysis for Real-Life Applications: Theory and Practice investigates the application of Intelligent Data Analysis (IDA) to these data sets through the design and development of algorithms and techniques to extract knowledge from databases. This pivotal reference explores practical applications of IDA, and it is essential for academic and research libraries as well as students, researchers, and educators in data analysis, application development, and database management.
"Addresses the evolution of database management, technologies and applications along with the progress and endeavors of new research areas."--P. xiii.
This volume in the Advances in Management Information Systems series presents the very latest, state-of-the art research in the field. The editors and contributors are well-known researchers in this area. The book focuses on the personal and socio-technical aspects of SA&D. Chapters are grouped into three categories: people and social systems, socio technical processes, and project teams. Topics include: --Designing context-aware business processes --Staffing web-enabled e-commerce projects and programs --Modeling techniques in IS development project teams.
Optimization techniques have been widely adopted to implement various data mining algorithms. In addition to well-known Support Vector Machines (SVMs) (which are based on quadratic programming), different versions of Multiple Criteria Programming (MCP) have been extensively used in data separations. Since optimization based data mining methods differ from statistics, decision tree induction, and neural networks, their theoretical inspiration has attracted many researchers who are interested in algorithm development of data mining. Optimization based Data Mining: Theory and Applications, mainly focuses on MCP and SVM especially their recent theoretical progress and real-life applications in various fields. These include finance, web services, bio-informatics and petroleum engineering, which has triggered the interest of practitioners who look for new methods to improve the results of data mining for knowledge discovery. Most of the material in this book is directly from the research and application activities that the authors’ research group has conducted over the last ten years. Aimed at practitioners and graduates who have a fundamental knowledge in data mining, it demonstrates the basic concepts and foundations on how to use optimization techniques to deal with data mining problems.
Data Science gets thrown around in the press like it'smagic. Major retailers are predicting everything from when theircustomers are pregnant to when they want a new pair of ChuckTaylors. It's a brave new world where seemingly meaningless datacan be transformed into valuable insight to drive smart businessdecisions. But how does one exactly do data science? Do you have to hireone of these priests of the dark arts, the "data scientist," toextract this gold from your data? Nope. Data science is little more than using straight-forward steps toprocess raw data into actionable insight. And in DataSmart, author and data scientist John Foreman will show you howthat's done within the familiar environment of aspreadsheet. Why a spreadsheet? It's comfortable! You get to look at the dataevery step of the way, building confidence as you learn the tricksof the trade. Plus, spreadsheets are a vendor-neutral place tolearn data science without the hype. But don't let the Excel sheets fool you. This is a book forthose serious about learning the analytic techniques, the math andthe magic, behind big data. Each chapter will cover a different technique in aspreadsheet so you can follow along: Mathematical optimization, including non-linear programming andgenetic algorithms Clustering via k-means, spherical k-means, and graphmodularity Data mining in graphs, such as outlier detection Supervised AI through logistic regression, ensemble models, andbag-of-words models Forecasting, seasonal adjustments, and prediction intervalsthrough monte carlo simulation Moving from spreadsheets into the R programming language You get your hands dirty as you work alongside John through eachtechnique. But never fear, the topics are readily applicable andthe author laces humor throughout. You'll even learnwhat a dead squirrel has to do with optimization modeling, whichyou no doubt are dying to know.
Radically reimagine our ways of being, learning, and doing Education can be transformed if we eradicate our fixation on big data like standardized test scores as the supreme measure of equity and learning. Instead of the focus being on "fixing" and "filling" academic gaps, we must envision and rebuild the system from the student up—with classrooms, schools and systems built around students’ brilliance, cultural wealth, and intellectual potential. Street data reminds us that what is measurable is not the same as what is valuable and that data can be humanizing, liberatory and healing. By breaking down street data fundamentals: what it is, how to gather it, and how it can complement other forms of data to guide a school or district’s equity journey, Safir and Dugan offer an actionable framework for school transformation. Written for educators and policymakers, this book · Offers fresh ideas and innovative tools to apply immediately · Provides an asset-based model to help educators look for what’s right in our students and communities instead of seeking what’s wrong · Explores a different application of data, from its capacity to help us diagnose root causes of inequity, to its potential to transform learning, and its power to reshape adult culture Now is the time to take an antiracist stance, interrogate our assumptions about knowledge, measurement, and what really matters when it comes to educating young people.
This tutorial book presents an augmented selection of material presented at the International Summer School on Generative and Transformational Techniques in Software Engineering, GTTSE 2005. The book comprises 7 tutorial lectures presented together with 8 technology presentations and 6 contributions to the participants workshop. The tutorials combine foundations, methods, examples, and tool support. Subjects covered include feature-oriented programming and the AHEAD tool suite; program transformation with reflection and aspect-oriented programming, and more.
"This collection compiles research to drive further evolution and innovation of these next-generation technologies and their applications, of which the scientific, technological, and commercial communities have only begun to scratch the surface. It is an essential reference acquisition for any library seeking to cover the leading edge of technological innovations"--Provided by publisher.