Download Free Transactions On Large Scale Data And Knowledge Centered Systems Xxi Book in PDF and EPUB Free Download. You can read online Transactions On Large Scale Data And Knowledge Centered Systems Xxi and write the review.

The LNCS journal Transactions on Large-Scale Data- and Knowledge-Centered Systems focuses on data management, knowledge discovery, and knowledge processing, which are core and hot topics in computer science. Since the 1990s, the Internet has become the main driving force behind application development in all domains. An increase in the demand for resource sharing across different sites connected through networks has led to an evolution of data- and knowledge-management systems from centralized systems to decentralized systems enabling large-scale distributed applications providing high scalability. Current decentralized systems still focus on data and knowledge as their main resource. Feasibility of these systems relies basically on P2P (peer-to-peer) techniques and the support of agent systems with scaling and decentralized control. Synergy between grids, P2P systems, and agent technologies is the key to data- and knowledge-centered systems in large-scale environments. This volume, the 21st issue of Transactions on Large-Scale Data- and Knowledge-Centered Systems, focuses on Data Warehousing and Knowledge Discovery from Big Data, and contains extended and revised versions of eight papers selected as the best papers from the 14th International Conference on Data Warehousing and Knowledge Discovery (DaWaK 2012), held in Vienna, Austria, during September 3-6, 2012. These papers cover several advanced Big Data topics, ranging from data cube computation using MapReduce to multiple aggregations over multidimensional databases, from data warehousing systems over complex energy data to OLAP-based prediction models, from extended query engines for continuous stream analytics to popular pattern mining, and from rare pattern mining to enhanced knowledge discovery from large cross-document corpora.
The LNCS journal Transactions on Large-Scale Data and Knowledge-Centered Systems focuses on data management, knowledge discovery, and knowledge processing, which are core and hot topics in computer science. Since the 1990s, the Internet has become the main driving force behind application development in all domains. An increase in the demand for resource sharing (e.g., computing resources, services, metadata, data sources) across different sites connected through networks has led to an evolution of data- and knowledge-management systems from centralized systems to decentralized systems enabling large-scale distributed applications providing high scalability. This, the 52nd issue of Transactions on Large-Scale Data and Knowledge-Centered Systems, contains 6 fully revised selected regular papers.
This, the 28th issue of Transactions on Large-Scale Data- and Knowledge-Centered Systems, contains extended and revised versions of six papers presented at the 26th International Conference on Database- and Expert-Systems Applications, DEXA 2015, held in Valencia, Spain, in September 2015. Topics covered include efficient graph processing, machine learning on big data, multistore big data integration, ontology matching, and the optimization of histograms for the Semantic Web.
The LNCS journal Transactions on Large-Scale Data- and Knowledge-Centered Systems focuses on data management, knowledge discovery, and knowledge processing, which are core and hot topics in computer science. Since the 1990s, the Internet has become the main driving force behind application development in all domains. An increase in the demand for resource sharing (e.g., computing resources, services, metadata, data sources) across different sites connected through networks has led to an evolution of data- and knowledge-management systems from centralized systems to decentralized systems enabling large-scale distributed applications providing high scalability. This, the 43rd issue of Transactions on Large-Scale Data- and Knowledge-Centered Systems, contains five revised selected regular papers. Topics covered include classification tasks, machine learning algorithms, top-k queries, business process redesign and a knowledge capitalization framework.
The LNCS journal Transactions on Large-scale Data and Knowledge-centered Systems focuses on data management, knowledge discovery, and knowledge processing, which are core and hot topics in computer science. Since the 1990s, the Internet has become the main driving force behind application development in all domains. An increase in the demand for resource sharing (e.g. computing resources, services, metadata, data sources) across different sites connected through networks has led to an evolution of data- and knowledge-management systems from centralized systems to decentralized systems enabling large-scale distributed applications providing high scalability. This, the 53rd issue of Transactions on Large-scale Data and Knowledge-centered Systems, contains six fully revised selected regular papers. Topics covered include time series management from edge to cloud, segmentation for time series representation, similarity research, semantic similarity in a taxonomy, linked data semantic distance, linguistics-informed natural language processing, graph neural network, protected features, imbalanced data, causal consistency in distributed databases, actor model, and elastic horizontal scalability.
The LNCS journal Transactions on Large-Scale Data- and Knowledge-Centered Systems focuses on data management, knowledge discovery, and knowledge processing, which are core and hot topics in computer science. Since the 1990s, the Internet has become the main driving force behind application development in all domains. An increase in the demand for resource sharing across different sites connected through networks has led to an evolution of data- and knowledge-management systems from centralized systems to decentralized systems enabling large-scale distributed applications providing high scalability. Current decentralized systems still focus on data and knowledge as their main resource. Feasibility of these systems relies basically on P2P (peer-to-peer) techniques and the support of agent systems with scaling and decentralized control. Synergy between grids, P2P systems, and agent technologies is the key to data- and knowledge-centered systems in large-scale environments. This, the eighth issue of Transactions on Large-Scale Data- and Knowledge-Centered Systems, contains eight revised selected regular papers focusing on the following topics: scalable data warehousing via MapReduce, extended OLAP multidimensional models, naive OLAP engines and their optimization, advanced data stream processing and mining, semi-supervised learning of data streams, incremental pattern mining over data streams, association rule mining over data streams, frequent pattern discovery over data streams.
The LNCS journal Transactions on Large-Scale Data- and Knowledge-Centered Systems focuses on data management, knowledge discovery and knowledge processing, which are core and hot topics in computer science. Since the 1990s, the Internet has become the main driving force behind application development in all domains. An increase in the demand for resource sharing across different sites connected through networks has led to an evolution of data- and knowledge-management systems from centralized systems to decentralized systems enabling large-scale distributed applications providing high scalability. Current decentralized systems still focus on data and knowledge as their main resource. Feasibility of these systems relies basically on P2P (peer-to-peer) techniques and the support of agent systems with scaling and decentralized control. Synergy between grids, P2P systems and agent technologies is the key to data- and knowledge-centered systems in large-scale environments. This, the 17th issue of Transactions on Large-Scale Data- and Knowledge-Centered Systems, contains extended and revised versions of five papers, selected from the 24 full and 8 short papers presented at the 15th International Conference on Data Warehousing and Knowledge Discovery, DaWaK 2013, held in Prague, The Czech Republic, in August 2013. Of the five papers, two cover data warehousing aspects related to query processing optimization in advanced platforms, specifically Map Reduce and parallel databases, and three cover knowledge discovery, specifically the causal network inference problem, dimensionality reduction, and the quality-of-pattern-mining task.
The LNCS journal Transactions on Large-Scale Data- and Knowledge-Centered Systems focuses on data management, knowledge discovery, and knowledge processing, which are core and hot topics in computer science. Since the 1990s, the Internet has become the main driving force behind application development in all domains. An increase in the demand for resource sharing (e.g., computing resources, services, metadata, data sources) across different sites connected through networks has led to an evolution of data- and knowledge management systems from centralized systems to decentralized systems enabling large-scale distributed applications providing high scalability. This, the 48th issue of Transactions on Large-Scale Data- and Knowledge-Centered Systems, contains 8 invited papers dedicated to the memory of Prof. Dr. Roland Wagner. The topics covered include distributed database systems, NewSQL, scalable transaction management, strong consistency, caches, data warehouse, ETL, reinforcement learning, stochastic approximation, multi-agent systems, ontology, model-driven development, organisational modelling, digital government, new institutional economics and data governance.
This, the 38th issue of Transactions on Large-Scale Data- and Knowledge-Centered Systems, contains extended and revised versions of six papers selected from the 68 contributions presented at the 27th International Conference on Database and Expert Systems Applications, DEXA 2016, held in Porto, Portugal, in September 2016. Topics covered include query personalization in databases, data anonymization, similarity search, computational methods for entity resolution, array-based computations in big data analysis, and pattern mining.