Download Free Traffic Grooming For Optical Networks Book in PDF and EPUB Free Download. You can read online Traffic Grooming For Optical Networks and write the review.

This book presents the practical motivation, theoretical description, and extant techniques for traffic grooming in optical networks. The description of the various topics of research will be authored by leading researchers in this area, and will contain comprehensive description of related literature for each area. This book is intended to be a definitive reference and text for traffic grooming both for the practitioner in industry and the student in academia.
The advent of fiber optic transmission systems and wavelength division multiplexing (WDM) have led to a dramatic increase in the usable bandwidth of single fiber systems. This book provides detailed coverage of survivability (dealing with the risk of losing large volumes of traffic data due to a failure of a node or a single fiber span) and traffic grooming (managing the increased complexity of smaller user requests over high capacity data pipes), both of which are key issues in modern optical networks. A framework is developed to deal with these problems in wide-area networks, where the topology used to service various high-bandwidth (but still small in relation to the capacity of the fiber) systems evolves toward making use of a general mesh. Effective solutions, exploiting complex optimization techniques, and heuristic methods are presented to keep network problems tractable. Newer networking technologies and efficient design methodologies are also described.
Optical networks based on wavelength-division multiplexing (WDM) tech nology offer the promise to satisfy the bandwidth requirements of the Inter net infrastructure, and provide a scalable solution to support the bandwidth needs of future applications in the local and wide areas. In a waveleng- routed network, an optical channel, referred to as a lightpath, is set up between two network nodes for communication. Using WDM technology, an optical fiber link can support multiple non-overlapping wavelength channels, each of which can be operated at the data rate of 10 Gbps or 40 Gbps today. On the other hand, only a fraction of customers are expected to have a need for such a high bandwidth. Due to the large cost of the optical backbone infrastruc ture and enormous WDM channel capacity, connection requests with diverse low-speed bandwidth requirements need to be efficiently groomed onto hi- capacity wavelength channels. This book investigates the optimized design, provisioning, and performance analysis of traffic-groomable WDM networks, and proposes and evaluates new WDM network architectures. Organization of the Book Significant amount of research effort has been devoted to traffic grooming in SONET/WDM ring networks since the current telecom networks are mainly deployed in the form of ring topologies or interconnected rings. As the long-haul backbone networks are evolving to irregular mesh topologies, traffic grooming in optical WDM mesh networks becomes an extremely important and practical research topic for both industry and academia.
This book presents advances in the field of optical networks - specifically on research and applications in elastic optical networks (EON). The material reflects the authors’ extensive research and industrial activities and includes contributions from preeminent researchers and practitioners in optical networking. The authors discuss the new research and applications that address the issue of increased bandwidth demand due to disruptive, high bandwidth applications, e.g., video and cloud applications. The book also discusses issues with traffic not only increasing but becoming much more dynamic, both in time and direction, and posits immediate, medium, and long-term solutions throughout the text. The book is intended to provide a reference for network architecture and planning, communication systems, and control and management approaches that are expected to steer the evolution of EONs.
We consider the problem of minimizing network costs when grooming traffic in optical networks that support Wavelength Division Multiplexing (WDM). While the general problem has been shown to be NP-Hard for a number of cost measures, there still exist restricted problems for which no complexity bound is known. In this research, we restrict our attention to traffic grooming for path networks with egress (all-to-one) traffic. This restricted model has practical significance for high speed (optical) access networks and can also lead to better bounds and approximations on more general network topologies (such as ring and star networks) that can be decomposed into path networks. Three important cost measures for this restricted model are studied. The first cost measure is the total number of ADMs used by the solution. Minimizing this cost was known to be NP-Complete even for egress traffic without using cross connects. We show that allowing an unbounded number of wavelengths obviates the need for digital cross connects at the nodes and hence the problem remains NP-Complete even when cross connects are allowed. The second cost measure is the number of transceivers used by the solution. We show that the problem of minimizing the number of transceivers is NP-Complete, even when restricted to egress traffic. We then develop a simple approximation scheme where the transceiver cost exceeds the minimum by at most the number of required wavelengths. Finally, we show that under certain conditions, there exist solutions that simultaneously minimize both ADM and transceiver costs. The third cost model aims to minimize the total electronic switching in the network. For this cost measure, we develop a polynomial time algorithm to determine the cost and structure of an optimum solution when the wavelength capacity constraint is relaxed. A closed form expression to determine the minimum cost is presented for problem instances with uniform traffic. We observe that these costs provide a l.
Wavelength division multiplexing (WDM) has emerged as a viable solution to the increasing bandwidth demands of current backbone networks. Traffic grooming allows the resources available on a single wavelength to be utilized by multiple traffic streams. These networks will support large amounts of traffic from various sources. In view of this, our research focuses on the analysis of such types of networks, and in particular on a traffic-groomed tandem optical network that supports multiple sources each with unique resource requirements. We developed a decomposition algorithm for the analysis of this network using a modified version of Courtois' method. This work was extended to analyze tandem networks with a large number of wavelengths and resources per wavelength using a modified version of the recursion developed by Nilsson et. al. Finally, we extended our work to a traffic-groomed tandem optical network employing alternate routing and supporting traffic from multiple sources. For each method, numerical results show that, overall, our approximation provides good accuracy.