Download Free Tractability Of Multivariate Problems Standard Information For Functionals Book in PDF and EPUB Free Download. You can read online Tractability Of Multivariate Problems Standard Information For Functionals and write the review.

This is the second volume of a three-volume set comprising a comprehensive study of the tractability of multivariate problems. The second volume deals with algorithms using standard information consisting of function values for the approximation of linear and selected nonlinear functionals. An important example is numerical multivariate integration. The proof techniques used in volumes I and II are quite different. It is especially hard to establish meaningful lower error bounds for the approximation of functionals by using finitely many function values. Here, the concept of decomposable reproducing kernels is helpful, allowing it to find matching lower and upper error bounds for some linear functionals. It is then possible to conclude tractability results from such error bounds. Tractability results, even for linear functionals, are very rich in variety. There are infinite-dimensional Hilbert spaces for which the approximation with an arbitrarily small error of all linear functionals requires only one function value. There are Hilbert spaces for which all nontrivial linear functionals suffer from the curse of dimensionality. This holds for unweighted spaces, where the role of all variables and groups of variables is the same. For weighted spaces one can monitor the role of all variables and groups of variables. Necessary and sufficient conditions on the decay of the weights are given to obtain various notions of tractability. The text contains extensive chapters on discrepancy and integration, decomposable kernels and lower bounds, the Smolyak/sparse grid algorithms, lattice rules and the CBC (component-by-component) algorithms. This is done in various settings. Path integration and quantum computation are also discussed. This volume is of interest to researchers working in computational mathematics, especially in approximation of high-dimensional problems. It is also well suited for graduate courses and seminars. There are 61 open problems listed to stimulate future research in tractability.
Multivariate problems occur in many applications. These problems are defined on spaces of $d$-variate functions and $d$ can be huge--in the hundreds or even in the thousands. Some high-dimensional problems can be solved efficiently to within $\varepsilon$, i.e., the cost increases polynomially in $\varepsilon^{-1}$ and $d$. However, there are many multivariate problems for which even the minimal cost increases exponentially in $d$. This exponential dependence on $d$ is called intractability or the curse of dimensionality. This is the first volume of a three-volume set comprising a comprehensive study of the tractability of multivariate problems. It is devoted to tractability in the case of algorithms using linear information and develops the theory for multivariate problems in various settings: worst case, average case, randomized and probabilistic. A problem is tractable if its minimal cost is not exponential in $\varepsilon^{-1}$ and $d$. There are various notions of tractability, depending on how we measure the lack of exponential dependence. For example, a problem is polynomially tractable if its minimal cost is polynomial in $\varepsilon^{-1}$ and $d$. The study of tractability was initiated about 15 years ago. This is the first and only research monograph on this subject. Many multivariate problems suffer from the curse of dimensionality when they are defined over classical (unweighted) spaces. In this case, all variables and groups of variables play the same role, which causes the minimal cost to be exponential in $d$. But many practically important problems are solved today for huge $d$ in a reasonable time. One of the most intriguing challenges of the theory is to understand why this is possible. Multivariate problems may become weakly tractable, polynomially tractable or even strongly polynomially tractable if they are defined over weighted spaces with properly decaying weights. One of the main purposes of this book is to study weighted spaces and obtain necessary and sufficient conditions on weights for various notions of tractability. The book is of interest for researchers working in computational mathematics, especially in approximation of high-dimensional problems. It may be also suitable for graduate courses and seminars. The text concludes with a list of thirty open problems that can be good candidates for future tractability research.
This book represents the refereed proceedings of the Tenth International Conference on Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing that was held at the University of New South Wales (Australia) in February 2012. These biennial conferences are major events for Monte Carlo and the premiere event for quasi-Monte Carlo research. The proceedings include articles based on invited lectures as well as carefully selected contributed papers on all theoretical aspects and applications of Monte Carlo and quasi-Monte Carlo methods. The reader will be provided with information on latest developments in these very active areas. The book is an excellent reference for theoreticians and practitioners interested in solving high-dimensional computational problems arising, in particular, in finance, statistics and computer graphics.
The contributions by leading experts in this book focus on a variety of topics of current interest related to information-based complexity, ranging from function approximation, numerical integration, numerical methods for the sphere, and algorithms with random information, to Bayesian probabilistic numerical methods and numerical methods for stochastic differential equations.
This book is summarizing the results of the workshop "Uniform Distribution and Quasi-Monte Carlo Methods" of the RICAM Special Semester on "Applications of Algebra and Number Theory" in October 2013. The survey articles in this book focus on number theoretic point constructions, uniform distribution theory, and quasi-Monte Carlo methods. As deterministic versions of the Monte Carlo method, quasi-Monte Carlo rules enjoy increasing popularity, with many fruitful applications in mathematical practice, as for example in finance, computer graphics, and biology. The goal of this book is to give an overview of recent developments in uniform distribution theory, quasi-Monte Carlo methods, and their applications, presented by leading experts in these vivid fields of research.
This volume is dedicated to the memory of Björn Jawerth. It contains original research contributions and surveys in several of the areas of mathematics to which Björn made important contributions. Those areas include harmonic analysis, image processing, and functional analysis, which are of course interrelated in many significant and productive ways. Among the contributors are some of the world's leading experts in these areas. With its combination of research papers and surveys, this book may become an important reference and research tool. This book should be of interest to advanced graduate students and professional researchers in the areas of functional analysis, harmonic analysis, image processing, and approximation theory. It combines articles presenting new research with insightful surveys written by foremost experts.
This book is a tribute to Professor Ian Hugh Sloan on the occasion of his 80th birthday. It consists of nearly 60 articles written by international leaders in a diverse range of areas in contemporary computational mathematics. These papers highlight the impact and many achievements of Professor Sloan in his distinguished academic career. The book also presents state of the art knowledge in many computational fields such as quasi-Monte Carlo and Monte Carlo methods for multivariate integration, multi-level methods, finite element methods, uncertainty quantification, spherical designs and integration on the sphere, approximation and interpolation of multivariate functions, oscillatory integrals, and in general in information-based complexity and tractability, as well as in a range of other topics. The book also tells the life story of the renowned mathematician, family man, colleague and friend, who has been an inspiration to many of us. The reader may especially enjoy the story from the perspective of his family, his wife, his daughter and son, as well as grandchildren, who share their views of Ian. The clear message of the book is that Ian H. Sloan has been a role model in science and life.
MATRIX is Australia’s international and residential mathematical research institute. It facilitates new collaborations and mathematical advances through intensive residential research programs, each 1-4 weeks in duration. This book is a scientific record of the eight programs held at MATRIX in 2018: - Non-Equilibrium Systems and Special Functions - Algebraic Geometry, Approximation and Optimisation - On the Frontiers of High Dimensional Computation - Month of Mathematical Biology - Dynamics, Foliations, and Geometry In Dimension 3 - Recent Trends on Nonlinear PDEs of Elliptic and Parabolic Type - Functional Data Analysis and Beyond - Geometric and Categorical Representation Theory The articles are grouped into peer-reviewed contributions and other contributions. The peer-reviewed articles present original results or reviews on a topic related to the MATRIX program; the remaining contributions are predominantly lecture notes or short articles based on talks or activities at MATRIX.
This book represents the refereed proceedings of the Ninth International Conference on Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing that was held at the University of Warsaw (Poland) in August 2010. These biennial conferences are major events for Monte Carlo and the premiere event for quasi-Monte Carlo research. The proceedings include articles based on invited lectures as well as carefully selected contributed papers on all theoretical aspects and applications of Monte Carlo and quasi-Monte Carlo methods. The reader will be provided with information on latest developments in these very active areas. The book is an excellent reference for theoreticians and practitioners interested in solving high-dimensional computational problems arising, in particular, in finance and statistics.
The year 2018 marked the 75th anniversary of the founding of Mathematics of Computation, one of the four primary research journals published by the American Mathematical Society and the oldest research journal devoted to computational mathematics. To celebrate this milestone, the symposium “Celebrating 75 Years of Mathematics of Computation” was held from November 1–3, 2018, at the Institute for Computational and Experimental Research in Mathematics (ICERM), Providence, Rhode Island. The sixteen papers in this volume, written by the symposium speakers and editors of the journal, include both survey articles and new contributions. On the discrete side, there are four papers covering topics in computational number theory and computational algebra. On the continuous side, there are twelve papers covering topics in machine learning, high dimensional approximations, nonlocal and fractional elliptic problems, gradient flows, hyperbolic conservation laws, Maxwell's equations, Stokes's equations, a posteriori error estimation, and iterative methods. Together they provide a snapshot of significant achievements in the past quarter century in computational mathematics and also in important current trends.