Download Free Tracers And Modelling In Hydrogeology Book in PDF and EPUB Free Download. You can read online Tracers And Modelling In Hydrogeology and write the review.

Groundwater issues have generated worldwide concern in recent decades. The problems are numerous: too little groundwater, too much groundwater, groundwater contaminated by either saline water or a broad spectrum of industrial and domestic pollutants. Many urban groundwater problems are not unique to any one region, which is the thinking behind this book. Many of the case studies presented here have never before been described in English. Overall, the papers represent the work and experience of researchers and groundwater professionals who have worked on urban groundwater issues in developed and less-developed nations around the world. They reveal the magnitude and scope of the problem as well as identify future challenges, potential courses of action, and emerging technologies that offer hope for the future.
Tracers in Hydrology and Water Research is a comprehensive overview of the application of natural and artificial tracers in hydrology and environmental research. Taking a unique approach by providing the reader with a systematic and state of the art description of natural and artificial tracers, the book also covers key analytical techniques and applications, and modern tracer methods in the context of systematic hydrology. Tracers have become a primary tool for process investigation, qualitative and quantitative system analysis and integrated resource management. This book will outline the fundamentals of the subject, and examine the latest research findings, clearly showing the entire process of tracer application through the inclusion of numerous integrated case studies. As many techniques derive from different scientific disciplines (chemistry, biology, physics), the effort of compilation and integration into modern hydrology and environmental science research and application requires substantial continuity and experience, which certifies this group of authors. This book will be an invaluable reference not only for students and researchers within the field of Hydrology and Hydrogeology but also for engineers and other tracer techniques applying users.
HYDROGEOLOGY Hydrogeology: Principles and Practice provides a comprehensive introduction to the study of hydrogeology to enable the reader to appreciate the significance of groundwater in meeting current and future environmental and sustainable water resource challenges. This new edition has been thoroughly updated to reflect advances in the field since 2014 and includes over 350 new references. The book presents a systematic approach to understanding groundwater starting with new insights into the distribution of groundwater in the Earth’s upper continental crust and the role of groundwater as an agent of global material and elemental fluxes. Following chapters explain the fundamental physical and chemical principles of hydrogeology, and later chapters feature groundwater field investigation techniques in the context of catchment processes, as well as chapters on groundwater quality and contaminant hydrogeology, including a section on emerging contamination from microplastic pollution. Unique features of the book are chapters on the application of environmental isotopes and noble gases in the interpretation of aquifer evolution, and a discussion of regional characteristics such as topography, compaction and variable fluid density on geological processes affecting past, present and future groundwater flow regimes. The last chapter discusses future challenges for groundwater governance and management for the long-term sustainability of groundwater resources, including the role of managed aquifer recharge, and examines the linkages between groundwater and climate change, including impacts on cold-region hydrogeology. Given the drive to net-zero carbon emissions by 2050, the interaction of groundwater in the exploitation of energy resources, including renewable resources and shale gas, is reviewed. Throughout the text, boxes and a set of colour plates drawn from the authors’ teaching and research experience are used to explain special topics and to illustrate international case studies ranging from transboundary aquifers and submarine groundwater discharge to the hydrogeochemical factors that have influenced the history of malting and brewing in Europe. The appendices provide conversion tables and useful reference material, and include review questions and exercises, with answers, to help develop the reader’s knowledge and problem-solving skills in hydrogeology. This highly informative and accessible textbook is essential reading for undergraduate and graduate students primarily in earth sciences, environmental sciences and physical geography with an interest in hydrogeology or groundwater topics. The book will also find use among practitioners in hydrogeology, soil science, civil engineering and landscape planning who are involved in environmental and resource protection issues requiring an understanding of groundwater.
Environmental Tracers in Subsurface Hydrology synthesizes the research of specialists into a comprehensive review of the application of environmental tracers to the study of soil water and groundwater flow. The book includes chapters which cover ionic tracers, noble gases, chlorofluorocarbons, tritium, chlorine-36, oxygen-18, deuterium, and isotopes of carbon, strontium, sulphur and nitrogen. Applications of the tracers include the estimation of vertical and horizontal groundwater velocities, groundwater recharge rates, inter-aquifer leakage and mixing processes, chemical processes and palaeohydrology. Practicing hydrologists, soil physicists and hydrology professors and students will find the book to be a valuable support in their work.
The UK is a country with over 150 years of widespread exploitation of its principal aquifers for public water supply. Increasing demands, greater awareness of environmental pressures and more exacting legislation has heightened the need for quantitative models to predict the impacts of groundwater use. In the UK this has culminated in a unique national, regulator-led programme for England and Wales to develop conceptual and numerical models of the principal bedrock aquifers. The outcomes of this programme will be of interest to the international hydrogeological community, particularly as international legislation such as the European Water Framework Directive requires management of water issues across administrative boundaries with a varied cast of stakeholders. The collection of papers provides a contrast between practitioner- and research-based approaches to assess and predict the anthropogenic impacts and environmental pressures.