Download Free Toxicogenomics In Predictive Carcinogenicity Book in PDF and EPUB Free Download. You can read online Toxicogenomics In Predictive Carcinogenicity and write the review.

Research over the past decade has demonstrated that TGx methods of various types can be used to discriminate modes of mutagenesis as a function of dose. TGx can quickly inform safety evaluation regarding potential mechanisms of conventional outcomes and can provide essential dose-response information. This can then be used to ascertain the sequence of key events in a putative mode of action as may apply in quantitative cancer risk assessment. With the increasing complexity of research in mode of action investigations it is important to gain a better understand of approaches to data integration and health risk assessment. Furthermore, it is essential to consider how novel test systems and newer methods and approaches may be used in future to gain a better understanding of mechanisms. Toxicogenomics in Predictive Carcinogenicity describes toxicogenomics methods in predictive carcinogenicity testing, mode of action and safety evaluation, and cancer risk assessment. It illustrates these methods using case studies that have yielded significant new information on compounds and classes of compounds that have proven difficult to evaluate using conventional methods alone. This book additionally covers current and potential toxicogenomic research using stem cells as well as new bioinformatics methods for drug discovery and environmental toxicology. This publication is an indispensable tool for postgraduates, academics and industrialists working in biochemistry, genomics, carcinogenesis, pathology, pharmaceuticals, food technology, bioinformatics, risk assessment and environmental toxicology.
The new field of toxicogenomics presents a potentially powerful set of tools to better understand the health effects of exposures to toxicants in the environment. At the request of the National Institute of Environmental Health Sciences, the National Research Council assembled a committee to identify the benefits of toxicogenomics, the challenges to achieving them, and potential approaches to overcoming such challenges. The report concludes that realizing the potential of toxicogenomics to improve public health decisions will require a concerted effort to generate data, make use of existing data, and study data in new waysâ€"an effort requiring funding, interagency coordination, and data management strategies.
A comprehensive overview of techniques and systems currently utilized in predictive toxicology, this reference presents an in-depth survey of strategies, algorithms, and prediction methods to select, calculate, and represent the features and properties of chemical structures in biological systems. It provides sources of high-quality toxicity data, the most important commercial and noncommercial predictive toxicology programs, and advanced technologies in computational chemistry, biology, statistics, and data mining. Predictive Toxicology explores applications that go beyond classical structure-activity relationships and discusses programs such as OncoLogic, META, MC4PC, PASS, and lazar.
Some of what we know about the health effects of exposure to chemicals from food, drugs, and the environment come from studies of occupational, inadvertent, or accident-related exposures. When there is not enough human data, scientists rely on animal data to assess risk from chemical exposure and make health and safety decisions. However, humans and animals can respond differently to chemicals, including the types of adverse effects experienced and the dosages at which they occur. Scientists in the field of toxicogenomics are using new technologies to study the effects of chemicals. For example, in response to a particular chemical exposure, they can study gene expression ("transcriptomics"), proteins ("proteomics") and metabolites ("metabolomics"), and they can also look at how individual and species differences in the underlying DNA sequence itself can result in different responses to the environment. Based on a workshop held in August 2004, this report explores how toxicogenomics could enhance scientists' ability to make connections between data from experimental animal studies and human health.
This open access book presents recent advances in the pure sciences that are of significance in the quest for alternatives to the use of animals in research and describes a variety of practical applications of the three key guiding principles for the more ethical use of animals in experiments – replacement, reduction, and refinement, collectively known as the 3Rs. Important examples from across the world of implementation of the 3Rs in the testing of cosmetics, chemicals, pesticides, and biologics, including vaccines, are described, with additional information on relevant regulations. The coverage also encompasses emerging approaches to alternative tests and the 3Rs. The book is based on the most informative contributions delivered at the Asian Congress 2016 on Alternatives and Animal Use in the Life Sciences. It will be of value for those working in R&D, for graduate students, and for educators in various fields, including the pharmaceutical and cosmetic sciences, pharmacology, toxicology, and animal welfare. The free, open access distribution of Alternatives to Animal Testing is enabled by the Creative Commons Attribution license in International version 4: CC BY 4.0.
CHEMOMETRICS AND CHEMINFORMATICS IN AQUATIC TOXICOLOGY Explore chemometric and cheminformatic techniques and tools in aquatic toxicology Chemometrics and Cheminformatics in Aquatic Toxicology delivers an exploration of the existing and emerging problems of contamination of the aquatic environment through various metal and organic pollutants, including industrial chemicals, pharmaceuticals, cosmetics, biocides, nanomaterials, pesticides, surfactants, dyes, and more. The book discusses different chemometric and cheminformatic tools for non-experts and their application to the analysis and modeling of toxicity data of chemicals to various aquatic organisms. You’ll learn about a variety of aquatic toxicity databases and chemometric software tools and webservers as well as practical examples of model development, including illustrations. You’ll also find case studies and literature reports to round out your understanding of the subject. Finally, you’ll learn about tools and protocols including machine learning, data mining, and QSAR and ligand-based chemical design methods. Readers will also benefit from the inclusion of: A thorough introduction to chemometric and cheminformatic tools and techniques, including machine learning and data mining An exploration of aquatic toxicity databases, chemometric software tools, and webservers Practical examples and case studies to highlight and illustrate the concepts contained within the book A concise treatment of chemometric and cheminformatic tools and their application to the analysis and modeling of toxicity data Perfect for researchers and students in chemistry and the environmental and pharmaceutical sciences, Chemometrics and Cheminformatics in Aquatic Toxicology will also earn a place in the libraries of professionals in the chemical industry and regulators whose work involves chemometrics.
Of the thousands of novel compounds that a drug discovery project team invents and that bind to the therapeutic target, typically only a fraction of these have sufficient ADME/Tox properties to become a drug product. Understanding ADME/Tox is critical for all drug researchers, owing to its increasing importance in advancing high quality candidates to clinical studies and the processes of drug discovery. If the properties are weak, the candidate will have a high risk of failure or be less desirable as a drug product. This book is a tool and resource for scientists engaged in, or preparing for, the selection and optimization process. The authors describe how properties affect in vivo pharmacological activity and impact in vitro assays. Individual drug-like properties are discussed from a practical point of view, such as solubility, permeability and metabolic stability, with regard to fundamental understanding, applications of property data in drug discovery and examples of structural modifications that have achieved improved property performance. The authors also review various methods for the screening (high throughput), diagnosis (medium throughput) and in-depth (low throughput) analysis of drug properties. - Serves as an essential working handbook aimed at scientists and students in medicinal chemistry - Provides practical, step-by-step guidance on property fundamentals, effects, structure-property relationships, and structure modification strategies - Discusses improvements in pharmacokinetics from a practical chemist's standpoint
In the past decade there has been a major sea change in the way disease is diagnosed and investigated due to the advent of high throughput technologies, such as microarrays, lab on a chip, proteomics, genomics, lipomics, metabolomics etc. These advances have enabled the discovery of new and novel markers of disease relating to autoimmune disorders, cancers, endocrine diseases, genetic disorders, sensory damage, intestinal diseases etc. In many instances these developments have gone hand in hand with the discovery of biomarkers elucidated via traditional or conventional methods, such as histopathology or clinical biochemistry. Together with microprocessor-based data analysis, advanced statistics and bioinformatics these markers have been used to identify individuals with active disease or pathology as well as those who are refractory or have distinguishing pathologies. New analytical methods that have been used to identify markers of disease and is suggested that there may be as many as 40 different platforms. Unfortunately techniques and methods have not been readily transferable to other disease states and sometimes diagnosis still relies on single analytes rather than a cohort of markers. There is thus a demand for a comprehensive and focused evidenced-based text and scientific literature that addresses these issues. Hence the formulation of Biomarkers in Disease. The series covers a wide number of areas including for example, nutrition, cancer, endocrinology, cardiology, addictions, immunology, birth defects, genetics and so on. The chapters are written by national or international experts and specialists.
This volume will provide a contemporary account of advances in chemical carcinogenesis. It will promote the view that it is chemical alteration of the DNA that is a route cause of many cancers. The multi-stage model of chemical carcinogenesis, exposure to major classes of human carcinogens and their mode-of-action will be a focal point. The balance between metabolic activation to form biological reactive intermediates and their detoxification, ensuing DNA-lesions and their repair will be profiled. It will describe the chemical changes that occur in DNA that result from endogenous insults including epigenetic changes that lead to gene silencing. It will describe major mechanisms of mutagenesis, affects on tumor suppressor genes and proto-oncogenes, and how cell-cycle check points can be by-passed by the "stealth-like" properties of chemical carcinogens. Environmental agents that can promote tumor formation will be discussed. The monograph will have wide appeal as a knowledge base for graduate students, post-doctoral fellows and faculty interested in this aspect of cancer causation and research.