Download Free Toxicity Of Military Smokes And Obscurants Book in PDF and EPUB Free Download. You can read online Toxicity Of Military Smokes And Obscurants and write the review.

A variety of smokes and obscurants have been developed and used to screen armed forces from view, signal friendly forces, and mark positions. Smokes are produced by burning or vaporizing particular products. Obscurants are anthropogenic or naturally occurring particles suspended in the air. They block or weaken transmission of particular parts of the electromagnetic spectrum, such as visible and infrared radiation or microwaves. Fog, mist, and dust are examples of natural obscurants. White phosphorus and hexachloroethane smokes are examples of anthropogenic obscurants. The U.S. Army seeks to reduce the likelihood that exposure to smokes and obscurants during training would have adverse health effects on military personnel or civilians. To protect the health of exposed individuals, the Office of the Army Surgeon General requested that the National Research Council (NRC) independently review data on the toxicity of smokes and obscurants and recommend exposure guidance levels for military personnel in training and for the general public residing or working near military-training facilities.
Since Operation Desert Shield/Desert Storm, Gulf War veterans have expressed concerns about health effects that could be associated with their deployment and service during the war. Although similar concerns were raised after other military operations, the Gulf War deployment focused national attention on the potential, but uncertain, relationship between the presence of chemical and biological (CB) agents and other harmful agents in theater and health symptoms reported by military personnel. Strategies to Protect the Health of Deployed U.S. Forces which is one of the four two-year studies, examines the detection and tracking of exposures of deployed personnel to multiple harmful agents.
Ignition of upholstered furniture by small open flames from matches, cigarette lighters, and candles is one of the leading causes of residential-fire deaths in the United States. These fires accounted for about 16% of civilian fire deaths in 1996. On average, each year since 1990, about 90 deaths (primarily of children), 440 injuries, and property losses amounting to 50 million dollars have resulted from fires caused by the ignition of upholstered furniture by small open flames. Certain commercial seating products (such as aircraft and bus seats) are subject to flammability standards and sometimes incorporate FR-treated upholstery cover materials, but there is no federal-government requirement for residential upholstered furniture, and it is generally not treated with FR chemicals. It is estimated that less than 0.2% of all U.S. residential upholstery fabric is treated with flame-retardant (FR) chemicals. The Consumer Product Safety Act of 1972 created the U.S. Consumer Product Safety Commission (CPSC) as an independent federal regulatory agency whose mission is to protect the public from unreasonable risks of injury and death associated with consumer products. CPSC also administers the Flammable Fabrics Act, under which it regulates flammability hazards and the Federal Hazardous Substances Act (FHSA), which regulates hazardous substances including chemicals. In 1993, the National Association of State Fire Marshals petitioned CPSC to issue a performance-based flammability standard for upholstered furniture to reduce the risk of residential fires. The Commission granted that portion of the petition relating to small open flame ignition risks. In response to concerns regarding the safety of FR chemicals, Congress, in the fiscal year 1999 appropriations report for CPSC, requested that the National Research Council conduct an independent study of the health risks to consumers posed by exposure to FR chemicals that are likely to be used in residential upholstered furniture to meet a CPSC standard. The National Research Council assigned the project to the Committee on Toxicology (COT) of the Commission on Life Sciences' Board on Environmental Studies and Toxicology. COT convened the Subcommittee on Flame-Retardant Chemicals, which prepared this report. Subcommittee members were chosen for their recognized expertise in toxicology, pharmacology, epidemiology, chemistry, exposure assessment, risk assessment, and biostatistics. Toxicological Risks of Selected Flame-Retardant Chemicals is organized into 18 chapters and two appendices. Chapter 2 describes the risk assessment process used by the subcommittee in determining the risk associated with potential exposure to the various FR chemicals. Chapter 3 describes the method the subcommittee used to measure and estimate the intensity, frequency, extent, and duration of human exposure to FR chemicals. Chapters 4-19 provide the subcommittee's review and assessment of health risks posed by exposure to each of the 16 FR chemicals. Data gaps and research needs are provided at the end of these chapters.
U.S. Navy personnel who work on submarines are in an enclosed and isolated environment for days or weeks at a time when at sea. To protect workers from potential adverse health effects due to those conditions, the U.S. Navy has established exposure guidance levels for a number of contaminants. In this latest report in a series, the Navy asked the National Research Council (NRC) to review, and develop when necessary, exposure guidance levels for 11 contaminants. The report recommends exposure levels for hydrogen that are lower than current Navy guidelines. For all other contaminants (except for two for which there are insufficient data), recommended levels are similar to or slightly higher than those proposed by the Navy. The report finds that, overall, there is very little exposure data available on the submarine environment and echoes recommendations from earlier NRC reports to expand exposure monitoring in submarines.
Recently, environmental scientists have been required to perform a new type of assessment-ecological risk assessment. This is the first book that explains how to perform ecological risk assessments and gives assessors access to the full range of useful data, models, and conceptual approaches they need to perform an accurate assessment. It explains how ecological risk assessment relates to more familiar types of assessments. It also shows how to organize and conduct an ecological risk assessment, including defining the source, selecting endpoints, describing the relevant features of the receiving environment, estimating exposure, estimating effects, characterizing the risks, and interacting with the risk manager. Specific technical topics include finding and selecting toxicity data; statistical and mathematical models of effects on organisms, populations, and ecosystems; estimation of chemical fate parameters; modeling of chemical transport and fate; estimation of chemical uptake by organisms; and estimation, propagation, and presentation of uncertainty. Ecological Risk Assessment also covers conventional risk assessments, risk assessments for existing contamination, large scale problems, exotic organisms, and risk assessments based on environmental monitoring. Environmental assessors at regulatory agencies, consulting firms, industry, and government labs need this book for its approaches and methods for ecological risk assessment. Professors in ecology and other environmental sciences will find the book's practical preparation useful for classroom instruction. Environmental toxicologists and chemists will appreciate the discussion of the utility for risk assessment of particular toxicity tests and chemical determinations.
Crucial information on nuclear, chemical, and biological weapons From the diseased animal carcass hurled over the wall of a besieged castle to the nuclear suitcase bomb carried by a clandestine operative, the threat of unconventional weapons has always been a feature of warfare. Today's danger comes mainly from the potential use of nuclear, biological, and chemical (NBC) weapons of mass destruction (WMD) by international terrorists or rogue states. False alarms and misinformation about these weapons have abounded in the jittery post-9/11 atmosphere. To understand and deal with the actual threat posed requires basing response plans, policy, and reporting on actual facts. Introduction to Weapons of Mass Destruction separates fact from fiction about NBC weaponry by providing clear, technically precise information. For each family of weapon, coverage in this handbook includes: * History and background information * Agent types and delivery mechanisms * Effects of exposure * Protection * Safe storage and handling * Decontamination * Medical treatments Drawing from a broad array of military, scientific, and safety resources, this text offers both accessibility to the general public and accuracy and depth for professional emergency responders. Additional resources include a bibliography of references and a list of addresses and telephone numbers of federal and military agencies and professional organizations of interest. With full coverage of WMDs, from high-tech, genetically modified organisms to rudimentary radiological "dirty bombs," Introduction to Weapons of Mass Destruction is an essential reference for understanding and responding to these dangerous warfare agents.
The United States Navy has been concerned for some time with protecting its military and civilian personnel from reproductive and developmental hazards in the workplace. As part of its efforts to reduce or eliminate exposure of Naval personnel and their families to reproductive and developmental toxicants, the Navy requested that the National Research Council (NRC) recommend an approach that can be used to evaluate chemicals and physical agents for their potential to cause reproductive and developmental toxicity. The NRC assigned this project to the Committee on Toxicology, which convened the Subcommittee on Reproductive and Developmental Toxicology, to prepare this report. In this report, the subcommittee recommends an approach for evaluating agents for potential reproductive and developmental toxicity and demonstrates how that approach can be used by the Navy. This report has been reviewed in draft form by individuals chosen for their diverse perspectives and technical expertise, in accordance with procedures approved by the NRC's Report Review Committee. The purpose of this independent review is to provide candid and critical comments that will assist the institution in making its published report as sound as possible and to ensure that the report meets institutional standards for objectivity, evidence, and responsiveness to the study charge. The review comments and draft manuscript remain confidential to protect the integrity of the deliberative process. We wish to thank the following individuals for their review of this report: James Chen (National Center for Toxicological Research), George Daston (Procter and Gamble Company), Jerry Heindel (National Institute of Environmental Health Sciences), Grace Lemasters (University of Cincinnati), and John Young (National Center for Toxicological Research).
Most people associate fluoride with the practice of intentionally adding fluoride to public drinking water supplies for the prevention of tooth decay. However, fluoride can also enter public water systems from natural sources, including runoff from the weathering of fluoride-containing rocks and soils and leaching from soil into groundwater. Fluoride pollution from various industrial emissions can also contaminate water supplies. In a few areas of the United States fluoride concentrations in water are much higher than normal, mostly from natural sources. Fluoride is one of the drinking water contaminants regulated by the U.S. Environmental Protection Agency (EPA) because it can occur at these toxic levels. In 1986, the EPA established a maximum allowable concentration for fluoride in drinking water of 4 milligrams per liter, a guideline designed to prevent the public from being exposed to harmful levels of fluoride. Fluoride in Drinking Water reviews research on various health effects from exposure to fluoride, including studies conducted in the last 10 years.