Download Free Towards Hardware Intrinsic Security Book in PDF and EPUB Free Download. You can read online Towards Hardware Intrinsic Security and write the review.

Hardware-intrinsic security is a young field dealing with secure secret key storage. By generating the secret keys from the intrinsic properties of the silicon, e.g., from intrinsic Physical Unclonable Functions (PUFs), no permanent secret key storage is required anymore, and the key is only present in the device for a minimal amount of time. The field is extending to hardware-based security primitives and protocols such as block ciphers and stream ciphers entangled with the hardware, thus improving IC security. While at the application level there is a growing interest in hardware security for RFID systems and the necessary accompanying system architectures. This book brings together contributions from researchers and practitioners in academia and industry, an interdisciplinary group with backgrounds in physics, mathematics, cryptography, coding theory and processor theory. It will serve as important background material for students and practitioners, and will stimulate much further research and development.
Hardware-intrinsic security is a young field dealing with secure secret key storage. By generating the secret keys from the intrinsic properties of the silicon, e.g., from intrinsic Physical Unclonable Functions (PUFs), no permanent secret key storage is required anymore, and the key is only present in the device for a minimal amount of time. The field is extending to hardware-based security primitives and protocols such as block ciphers and stream ciphers entangled with the hardware, thus improving IC security. While at the application level there is a growing interest in hardware security for RFID systems and the necessary accompanying system architectures. This book brings together contributions from researchers and practitioners in academia and industry, an interdisciplinary group with backgrounds in physics, mathematics, cryptography, coding theory and processor theory. It will serve as important background material for students and practitioners, and will stimulate much further research and development.
Hardware Security: A Hands-On Learning Approach provides a broad, comprehensive and practical overview of hardware security that encompasses all levels of the electronic hardware infrastructure. It covers basic concepts like advanced attack techniques and countermeasures that are illustrated through theory, case studies and well-designed, hands-on laboratory exercises for each key concept. The book is ideal as a textbook for upper-level undergraduate students studying computer engineering, computer science, electrical engineering, and biomedical engineering, but is also a handy reference for graduate students, researchers and industry professionals. For academic courses, the book contains a robust suite of teaching ancillaries. Users will be able to access schematic, layout and design files for a printed circuit board for hardware hacking (i.e. the HaHa board) that can be used by instructors to fabricate boards, a suite of videos that demonstrate different hardware vulnerabilities, hardware attacks and countermeasures, and a detailed description and user manual for companion materials. - Provides a thorough overview of computer hardware, including the fundamentals of computer systems and the implications of security risks - Includes discussion of the liability, safety and privacy implications of hardware and software security and interaction - Gives insights on a wide range of security, trust issues and emerging attacks and protection mechanisms in the electronic hardware lifecycle, from design, fabrication, test, and distribution, straight through to supply chain and deployment in the field - A full range of instructor and student support materials can be found on the authors' own website for the book: http://hwsecuritybook.org
Design for security and meet real-time requirements with this must-have book covering basic theory, hardware design and implementation of cryptographic algorithms, and side channel analysis. Presenting state-of-the-art research and strategies for the design of very large scale integrated circuits and symmetric cryptosystems, the text discusses hardware intellectual property protection, obfuscation and physically unclonable functions, Trojan threats, and algorithmic- and circuit-level countermeasures for attacks based on power, timing, fault, cache, and scan chain analysis. Gain a comprehensive understanding of hardware security from fundamentals to practical applications.
This book provides readers with a valuable reference on cyber weapons and, in particular, viruses, software and hardware Trojans. The authors discuss in detail the most dangerous computer viruses, software Trojans and spyware, models of computer Trojans affecting computers, methods of implementation and mechanisms of their interaction with an attacker — a hacker, an intruder or an intelligence agent. Coverage includes Trojans in electronic equipment such as telecommunication systems, computers, mobile communication systems, cars and even consumer electronics. The evolutionary path of development of hardware Trojans from "cabinets", "crates" and "boxes" to the microcircuits (IC) is also discussed. Readers will benefit from the detailed review of the major known types of hardware Trojans in chips, principles of their design, mechanisms of their functioning, methods of their introduction, means of camouflaging and detecting, as well as methods of protection and counteraction.
This book constitutes the revised selected papers of the 6th International Conference on Information Systems Security and Privacy, ICISSP 2020, held in Valletta, Malta, in February 2020. The 11 full papers presented were carefully reviewed and selected from a total of 125 submissions. The papers presented in this volume address various topical research, including new approaches for attack modelling andprevention, incident management and response, and user authentication andaccess control, as well as business and human-oriented aspects such as data pro-tection and privacy, and security awareness.
The two-volume set LNCS 8269 and 8270 constitutes the refereed proceedings of the 19th International Conference on the Theory and Application of Cryptology and Information, Asiacrypt 2013, held in Bengaluru, India, in December 2013. The 54 revised full papers presented were carefully selected from 269 submissions. They are organized in topical sections named: zero-knowledge, algebraic cryptography, theoretical cryptography, protocols, symmetric key cryptanalysis, symmetric key cryptology: schemes and analysis, side-channel cryptanalysis, message authentication codes, signatures, cryptography based upon physical assumptions, multi-party computation, cryptographic primitives, analysis, cryptanalysis and passwords, leakage-resilient cryptography, two-party computation, hash functions.
This book explores up-to-date research trends and achievements on low-power and high-speed technologies in both electronics and optics. It offers unique insight into low-power and high-speed approaches ranging from devices, ICs, sub-systems and networks that can be exploited for future mobile devices, 5G networks, Internet of Things (IoT), and data centers. It collects heterogeneous topics in place to catch and predict future research directions of devices, circuits, subsystems, and networks for low-power and higher-speed technologies. Even it handles about artificial intelligence (AI) showing examples how AI technology can be combined with concurrent electronics. Written by top international experts in both industry and academia, the book discusses new devices, such as Si-on-chip laser, interconnections using graphenes, machine learning combined with CMOS technology, progresses of SiGe devices for higher-speed electronices for optic, co-design low-power and high-speed circuits for optical interconnect, low-power network-on-chip (NoC) router, X-ray quantum counting, and a design of low-power power amplifiers. Covers modern high-speed and low-power electronics and photonics. Discusses novel nano-devices, electronics & photonic sub-systems for high-speed and low-power systems, and many other emerging technologies like Si photonic technology, Si-on-chip laser, low-power driver for optic device, and network-on-chip router. Includes practical applications and recent results with respect to emerging low-power systems. Addresses the future perspective of silicon photonics as a low-power interconnections and communication applications.
This book provides the foundations for understanding hardware security and trust, which have become major concerns for national security over the past decade. Coverage includes security and trust issues in all types of electronic devices and systems such as ASICs, COTS, FPGAs, microprocessors/DSPs, and embedded systems. This serves as an invaluable reference to the state-of-the-art research that is of critical significance to the security of, and trust in, modern society’s microelectronic-supported infrastructures.
This book constitutes the refereed proceedings of the 8th International Conference on Trust and Trustworthy Computing, TRUST 2015, held in Heraklion, Crete, Greece, in August 2015. The 15 full papers and 3 short papers presented in this volume were carefully reviewed and selected from 42 submissions. They were organized in topical sections named: hardware-enhanced trusted execution; trust and users; trusted systems and services; trust and privacy; and building blocks for trust. There are 7 two-page abstracts of poster papers included in the back matter of the volume.