Download Free Towards An Integrated Approach To Measurement Analysis And Modeling Of Cortical Networks Book in PDF and EPUB Free Download. You can read online Towards An Integrated Approach To Measurement Analysis And Modeling Of Cortical Networks and write the review.

The amount of data being produced by neuroscientists is increasing rapidly, driven by advances in neuroimaging and recording techniques spanning multiple scales of resolution. The availability of such data poses significant challenges for their processing and interpretation. To gain a deeper understanding of the surrounding issues, the Editors of this e-Book reached out to an interdisciplinary community, and formed the Cortical Networks Working Group, and the genesis of this e-Book thus began with the formation of this Working Group, which was supported by the National Institute for Mathematical and Biological Synthesis in the USA. The Group consisted of scientists from neuroscience, physics, psychology and computer science, and meetings were held in person. (A detailed list of the group members is presented in the Editorial that follows.) At the time we started, in 2010, the term “big data” was hardly in existence, though the volume of data we were handling would certainly have qualified. Furthermore, there was significant interest in harnessing the power of supercomputers to perform large scale neuronal simulations, and in creating specialized hardware to mimic neural function. We realized that the various disciplines represented in our Group could and should work together to accelerate progress in Neuroscience. We searched for common threads that could define the foundation for an integrated approach to solve important problems in the field. We adopted a network-centric perspective to address these challenges, as the data are derived from structures that are themselves network-like. We proposed three inter-twined threads, consisting of measurement of neural activity, analysis of network structures deduced from this activity, and modeling of network function, leading to theoretical insights. This approach formed the foundation of our initial call for papers. When we issued the call for papers, we were not sure how many papers would fall into each of these threads. We were pleased that we found significant interest in each thread, and the number of submissions exceeded our expectations. This is an indication that the field of neuroscience is ripe for the type of integration and interchange that we had anticipated. We first published a special topics issue after we received a sufficient number of submissions. This is now being converted to an e-book to strengthen the coherence of its contributions. One of the strong themes emerging in this e-book is that network-based measures capture better the dynamics of brain processes, and provide features with greater discriminative power than point-based measures. Another theme is the importance of network oscillations and synchrony. Current research is shedding light on the principles that govern the establishment and maintenance of network oscillation states. These principles could explain why there is impaired synchronization between different brain areas in schizophrenics and Parkinson’s patients. Such research could ultimately provide the foundation for an understanding of other psychiatric and neurodegenerative conditions. The chapters in this book cover these three main threads related to cortical networks. Some authors have combined two or more threads within a single chapter. We expect the availability of related work appearing in a single e-book to help our readers see the connection between different research efforts, and spur further insights and research.
The amount of data being produced by neuroscientists is increasing rapidly, driven by advances in neuroimaging and recording techniques spanning multiple scales of resolution. The availability of such data poses significant challenges for their processing and interpretation. To gain a deeper understanding of the surrounding issues, the Editors of this e-Book reached out to an interdisciplinary community, and formed the Cortical Networks Working Group. The genesis of this e-Book thus began with this Working Group through support from the National Institute for Mathematical and Biological Synthesis in the USA. The Group consisted of scientists from neuroscience, physics, psychology and computer science, and meetings were held in person (a detailed list of the group members is presented in the Editorial that follows). At the time we started, in 2010, the term "big data" was hardly in existence, though the volume of data we were handling would certainly have qualified. Furthermore, there was significant interest in harnessing the power of supercomputers to perform large scale neuronal simulations, and in creating specialized hardware to mimic neural function. We realized that the various disciplines represented in our Group could and should work together to accelerate progress in Neuroscience. We searched for common threads that could define the foundation for an integrated approach to solve important problems in the field. We adopted a network-centric perspective to address these challenges, as the data are derived from structures that are themselves network-like. We proposed three inter-twined threads, consisting of measurement of neural activity, analysis of network structures deduced from this activity, and modeling of network function, leading to theoretical insights. This approach formed the foundation of our initial call for papers. When we issued the call for papers, we were not sure how many papers would fall into each of these threads. We were pleased that we found significant interest in each thread, and the number of submissions exceeded our expectations. This is an indication that the field of neuroscience is ripe for the type of integration and interchange that we had anticipated. We first published a special topics issue after we received a sufficient number of submissions. This is now being converted to an e-book to strengthen the coherence of its contributions. One of the strong themes emerging in this e-book is that network-based measures capture better the dynamics of brain processes, and provide features with greater discriminative power than point-based measures. Another theme is the importance of network oscillations and synchrony. Current research is shedding light on the principles that govern the establishment and maintenance of network oscillation states. These principles could explain why there is impaired synchronization between different brain areas in schizophrenics and Parkinson's patients. Such research could ultimately provide the foundation for an understanding of other psychiatric and neurodegenerative conditions. The chapters in this book cover these three main threads related to cortical networks. Some authors have combined two or more threads within a single chapter. We expect the availability of related work appearing in a single e-book to help our readers see the connection between different research efforts, and spur further insights and research.
Magnetoencephalography (MEG) is an invaluable functional brain imaging technique that provides direct, real-time monitoring of neuronal activity necessary for gaining insight into dynamic cortical networks. Our intentions with this book are to cover the richness and transdisciplinary nature of the MEG field, make it more accessible to newcomers and experienced researchers and to stimulate growth in the MEG area. The book presents a comprehensive overview of MEG basics and the latest developments in methodological, empirical and clinical research, directed toward master and doctoral students, as well as researchers. There are three levels of contributions: 1) tutorials on instrumentation, measurements, modeling, and experimental design; 2) topical reviews providing extensive coverage of relevant research topics; and 3) short contributions on open, challenging issues, future developments and novel applications. The topics range from neuromagnetic measurements, signal processing and source localization techniques to dynamic functional networks underlying perception and cognition in both health and disease. Topical reviews cover, among others: development on SQUID-based and novel sensors, multi-modal integration (low field MRI and MEG; EEG and fMRI), Bayesian approaches to multi-modal integration, direct neuronal imaging, novel noise reduction methods, source-space functional analysis, decoding of brain states, dynamic brain connectivity, sensory-motor integration, MEG studies on perception and cognition, thalamocortical oscillations, fetal and neonatal MEG, pediatric MEG studies, cognitive development, clinical applications of MEG in epilepsy, pre-surgical mapping, stroke, schizophrenia, stuttering, traumatic brain injury, post-traumatic stress disorder, depression, autism, aging and neurodegeneration, MEG applications in cognitive neuropharmacology and an overview of the major open-source analysis tools.
The articles in this Research Topic provide a state-of-the-art overview of the current progress in integrating computational and empirical research on visual object recognition. Developments in this exciting multidisciplinary field have recently gained momentum: High performance computing enabled breakthroughs in computer vision and computational neuroscience. In parallel, innovative machine learning applications have recently become available for datamining the large-scale, high resolution brain data acquired with (ultra-high field) fMRI and dense multi-unit recordings. Finally, new techniques to integrate such rich simulated and empirical datasets for direct model testing could aid the development of a comprehensive brain model. We hope that this Research Topic contributes to these encouraging advances and inspires future research avenues in computational and empirical neuroscience.
This book has brought together leading investigators who work in the new arena of brain connectomics. This includes ‘macro-connectome’ efforts to comprehensively chart long-distance pathways and functional networks; ‘micro-connectome’ efforts to identify every neuron, axon, dendrite, synapse, and glial process within restricted brain regions; and ‘meso-connectome’ efforts to systematically map both local and long-distance connections using anatomical tracers. This book highlights cutting-edge methods that can accelerate progress in elucidating static ‘hard-wired’ circuits of the brain as well as dynamic interactions that are vital for brain function. The power of connectomic approaches in characterizing abnormal circuits in the many brain disorders that afflict humankind is considered. Experts in computational neuroscience and network theory provide perspectives needed for synthesizing across different scales in space and time. Altogether, this book provides an integrated view of the challenges and opportunities in deciphering brain circuits in health and disease.
Proposes computational models of human memory and learning using a brain-computer interfacing (BCI) approach Human memory modeling is important from two perspectives. First, the precise fitting of the model to an individual's short-term or working memory may help in predicting memory performance of the subject in future. Second, memory models provide a biological insight to the encoding and recall mechanisms undertaken by the neurons present in active brain lobes, participating in the memorization process. This book models human memory from a cognitive standpoint by utilizing brain activations acquired from the cortex by electroencephalographic (EEG) and functional near-infrared-spectroscopic (f-NIRs) means. Cognitive Modeling of Human Memory and Learning A Non-invasive Brain-Computer Interfacing Approach begins with an overview of the early models of memory. The authors then propose a simplistic model of Working Memory (WM) built with fuzzy Hebbian learning. A second perspective of memory models is concerned with Short-Term Memory (STM)-modeling in the context of 2-dimensional object-shape reconstruction from visually examined memorized instances. A third model assesses the subjective motor learning skill in driving from erroneous motor actions. Other models introduce a novel strategy of designing a two-layered deep Long Short-Term Memory (LSTM) classifier network and also deal with cognitive load assessment in motor learning tasks associated with driving. The book ends with concluding remarks based on principles and experimental results acquired in previous chapters. Examines the scope of computational models of memory and learning with special emphasis on classification of memory tasks by deep learning-based models Proposes two algorithms of type-2 fuzzy reasoning: Interval Type-2 fuzzy reasoning (IT2FR) and General Type-2 Fuzzy Sets (GT2FS) Considers three classes of cognitive loads in the motor learning tasks for driving learners Cognitive Modeling of Human Memory and Learning A Non-invasive Brain-Computer Interfacing Approach will appeal to researchers in cognitive neuro-science and human/brain-computer interfaces. It is also beneficial to graduate students of computer science/electrical/electronic engineering.
Understanding how populations of neurons encode information is the challenge faced by researchers in the field of neural coding. Focusing on the many mysteries and marvels of the mind has prompted a prominent team of experts in the field to put their heads together and fire up a book on the subject. Simply titled Principles of Neural Coding, this book covers the complexities of this discipline. It centers on some of the major developments in this area and presents a complete assessment of how neurons in the brain encode information. The book collaborators contribute various chapters that describe results in different systems (visual, auditory, somatosensory perception, etc.) and different species (monkeys, rats, humans, etc). Concentrating on the recording and analysis of the firing of single and multiple neurons, and the analysis and recording of other integrative measures of network activity and network states—such as local field potentials or current source densities—is the basis of the introductory chapters. Provides a comprehensive and interdisciplinary approach Describes topics of interest to a wide range of researchers The book then moves forward with the description of the principles of neural coding for different functions and in different species and concludes with theoretical and modeling works describing how information processing functions are implemented. The text not only contains the most important experimental findings, but gives an overview of the main methodological aspects for studying neural coding. In addition, the book describes alternative approaches based on simulations with neural networks and in silico modeling in this highly interdisciplinary topic. It can serve as an important reference to students and professionals.