Download Free Towards A Thermodynamic Theory For Ecological Systems Book in PDF and EPUB Free Download. You can read online Towards A Thermodynamic Theory For Ecological Systems and write the review.

The book presents a consistent and complete ecosystem theory based on thermodynamic concepts. The first chapters are devoted to an interpretation of the first and second law of thermodynamics in ecosystem context. Then Prigogine's use of far from equilibrium thermodynamic is used on ecosystems to explain their reactions to perturbations. The introduction of the concept exergy makes it possible to give a more profound and comprehensive explanation of the ecosystem's reactions and growth-patterns. A tentative fourth law of thermodynamic is formulated and applied to facilitate these explanations. The trophic chain, the global energy and radiation balance and pattern and the reactions of ecological networks are all explained by the use of exergy. Finally, it is discussed how the presented theory can be applied more widely to explain ecological observations and rules, to assess ecosystem health and to develop ecological models.
Thermodynamics is used increasingly in ecology to understand the system properties of ecosystems because it is a basic science that describes energy transformation from a holistic view. In the last decade, many contributions to ecosystem theory based on thermodynamics have been published, therefore an important step toward integrating these theories and encouraging a more wide spread use of them is to present them in one volume. An ecosystem consists of interdependent living organisms that are also interdependent with their environment, all of which are involved in a constant transfer of energy and mass within a general state of equilibrium or dis-equilibrium. Thermodynamics can quantify exactly how "organized" or "disorganized" a system is - an extremely useful to know when trying to understand how a dynamic ecosystem is behaving. A part of the Environmental and Ecological (Math) Modeling series, Thermodynamics and Ecology is a book-length study - the first of its kind - of the current thinking on how an ecosystem can be explained and predicted in terms of its thermodynamical behavior. After the introductory chapters on the fundamentals of thermodynamics, the book explains how thermodynamic theory can be specifically applied to the "measurement" of an ecosystem, including the assessment of its state of entropy and enthalpy. Additionally, it will show economists how to put these theories to use when trying to quantify the movement of goods and services through another type of complex living system - a human society.
The book presents a consistent and complete ecosystem theory based on thermodynamic concepts. The first chapters are devoted to an interpretation of the first and second law of thermodynamics in ecosystem context. Then Prigogine's use of far from equilibrium thermodynamic is used on ecosystems to explain their reactions to perturbations. The introduction of the concept exergy makes it possible to give a more profound and comprehensive explanation of the ecosystem's reactions and growth-patterns. A tentative fourth law of thermodynamic is formulated and applied to facilitate these explanations. The trophic chain, the global energy and radiation balance and pattern and the reactions of ecological networks are all explained by the use of exergy. Finally, it is discussed how the presented theory can be applied more widely to explain ecological observations and rules, to assess ecosystem health and to develop ecological models.
Thermodynamics is used increasingly in ecology to understand the system properties of ecosystems because it is a basic science that describes energy transformation from a holistic view. In the last decade, many contributions to ecosystem theory based on thermodynamics have been published, therefore an important step toward integrating these theories and encouraging a more wide spread use of them is to present them in one volume. An ecosystem consists of interdependent living organisms that are also interdependent with their environment, all of which are involved in a constant transfer of energy and mass within a general state of equilibrium or dis-equilibrium. Thermodynamics can quantify exactly how "organized" or "disorganized" a system is - an extremely useful to know when trying to understand how a dynamic ecosystem is behaving. A part of the Environmental and Ecological (Math) Modeling series, Thermodynamics and Ecology is a book-length study - the first of its kind - of the current thinking on how an ecosystem can be explained and predicted in terms of its thermodynamical behavior. After the introductory chapters on the fundamentals of thermodynamics, the book explains how thermodynamic theory can be specifically applied to the "measurement" of an ecosystem, including the assessment of its state of entropy and enthalpy. Additionally, it will show economists how to put these theories to use when trying to quantify the movement of goods and services through another type of complex living system - a human society.
Possibly the first textbook to present a practically applicable ecosystems theory, Introduction to Systems Ecology helps readers understand how ecosystems work and how they react to disturbances. It demonstrates-with many examples and illustrations-how to apply the theory to explain observations and to make quantitative calculations and predictions
Modern buildings are both wasteful machines that can be made more efficient and instruments of the massive, metropolitan system engendered by the power of high-quality fuels. A comprehensive method of environmental design must reconcile the techniques of efficient building design with the radical urban and economic reorganization that we face. Over the coming century, we will be challenged to return to the renewable resource base of the eighteenth-century city with the knowledge, technologies, and expectations of the twenty-first-century metropolis. This book explores the architectural implications of systems ecology, which extends the principles of thermodynamics from the nineteenth-century focus on more efficient machinery to the contemporary concern with the resilient self-organization of ecosystems. Written with enough technical material to explain the methods, it does not include in-text equations or calculations, relying instead on the energy system diagrams to convey the argument. Architecture and Systems Ecology has minimal technical jargon and an emphasis on intelligible design conclusions, making it suitable for architecture students and professionals who are engaged with the fundamental issues faced by sustainable design. The energy systems language provides a holistic context for the many kinds of performance already evaluated in architecture—from energy use to material selection and even the choice of building style. It establishes the foundation for environmental principles of design that embrace the full complexity of our current situation. Architecture succeeds best when it helps shape, accommodate, and represent new ways of living together.
The authors look to the laws of thermodynamics for answers to the questions of evolution, ecology, economics, and even life's origin.
Thermodynamics sets fundamental laws for all physical processes and is central to driving and maintaining planetary dynamics. But how do Earth system processes perform work, where do they derive energy from, and what are the limits? This accessible book describes how the laws of thermodynamics apply to Earth system processes, from solar radiation to motion, geochemical cycling and biotic activity. It presents a novel view of the thermodynamic Earth system explaining how it functions and evolves, how different forms of disequilibrium are being maintained, and how evolutionary trends can be interpreted as thermodynamic trends. It also offers an original perspective on human activity, formulating this in terms of a thermodynamic, Earth system process. This book uses simple conceptual models and basic mathematical treatments to illustrate the application of thermodynamics to Earth system processes, making it ideal for researchers and graduate students across a range of Earth and environmental science disciplines.
"What in the ever-loving blue-eyed world do these [U1ano wicz's] innocuous comments on thermodynamics have to do with ecology!" Anonymous manuscript reviewer The American Naturalist, 1979 "The germ of the idea grows very slowly into something recognizable. It may all start with the mere desire to have an idea in the first place. " Walt Kelly Ten Ever-Lovin' Blue-Eyed Years with Pogo, 1959 "It all seems extremely interesting, but for the life of me it sounds as if you pulled it out of the air," my good friend Ray Lassiter exclaimed to me after enduring about 20 minutes of my enthusiasm for the newly formu lated concept of "ascendency" in ecosystems. "It wasn't," I replied, "but it would take a book to show you where it came from. " If such was the reaction of someone usually sympathetic to my manner of thinking, what could I expect from those who viewed biological devel opment in the traditional way? After all, I was suggesting that it is possi ble to quantify the growth and development of an entire ecosystem. Fur thermore, I was maintaining that this development was not entirely determined by events and entities at smaller scales, and yet could influ ence these component processes and structures. To be sure, mine was only the latest of many challenges to straight reductionism, but, like everyone else with a new idea, I thought mine was special.
A challenge to existing Newtonian and Darwinian paradigms, Ecology, the Ascendent Perspective demonstrates that a theoretically reshaped science of ecology, better suited to portraying the dynamics of the natural world, can be a more effective means of ensuring its health.