Download Free Toward The Development Of Nucleic Acid Assays Using Fluorescence Resonance Energy Transfer Fret And A Novel Label Free Molecular Switching Construct Book in PDF and EPUB Free Download. You can read online Toward The Development Of Nucleic Acid Assays Using Fluorescence Resonance Energy Transfer Fret And A Novel Label Free Molecular Switching Construct and write the review.

This volume comprises select papers presented at a symposium held in September, 1996 in India. The contributors used the forum to disseminate their research findings.
Discover how metal-enhanced fluorescence is changing traditional concepts of fluorescence This book collects and analyzes all the current trends, opinions, and emerging hot topics in the field of metal-enhanced fluorescence (MEF). Readers learn how this emerging technology enhances the utility of current fluorescence-based approaches. For example, MEF can be used to better detect and track specific molecules that may be present in very low quantities in either clinical samples or biological systems. Author Chris Geddes, a noted pioneer in the field, not only explains the fundamentals of metal-enhanced fluorescence, but also the significance of all the most recent findings and models in the field. Metal-enhanced fluorescence refers to the use of metal colloids and nanoscale metallic particles in fluorescence systems. It offers researchers the opportunity to modify the basic properties of fluorophores in both near- and far-field fluorescence formats. Benefits of metal-enhanced fluorescence compared to traditional fluorescence include: Increased efficiency of fluorescence emission Increased detection sensitivity Protect against fluorophore photobleaching Applicability to almost any molecule, including both intrinsic and extrinsic chromophores Following a discussion of the principles and fundamentals, the author examines the process and applications of metal-enhanced fluorescence. Throughout the book, references lead to the primary literature, facilitating in-depth investigations into particular topics. Guiding readers from the basics to state-of-the-technology applications, this book is recommended for all chemists, physicists, and biomedical engineers working in the field of fluorescence.
Advances in technology have revolutionized the development of light microscopy techniques in biomedical research, thus improving visualization of the microstructure of cells and tissues under physiological conditions. Fluorescence microscopy methods are non-contact and non-invasive and provide high spatial and temporal resolution that other laboratory techniques cannot. This well-illustrated book targets graduate students and scientists who are new to the state-of-the-art fluorescence microscopy techniques used in biological and clinical imaging. It explains basic concepts and imaging procedures for wide-field, confocal, multiphoton excitation, fluorescence resonance energy transfer (FRET), lifetime imaging (FLIM), spectral imaging, fluorescence recovery after photobleaching (FRAP), optical tweezers, total internal reflection, high spatial resolution atomic force microscopy (AFM), and bioluminescence imaging for gene expression. The usage of these techniques in various biological applications, including calcium, pH, membrane potential, mitochondrial signaling, protein-protein interactions under various physiological conditions, and deep tissue imaging, is clearly presented. The authors describe the approaches to selecting epifluorescence microscopy, the detectors, and the image acquisition and processing software for different biological applications. Step-by-step directions on preparing different digital formats for light microscopy images on websites are also provided.
With their similarity to the organs of the most advanced creatures that inhabit the Earth, sensors are regarded as being the “senses of electronics”: arti?cial eyes and ears that are capable of seeing and hearing beyond the range of - man perception; electronic noses and tongues that can recognise odours and ?avours without a lifetime training; touch that is able not only to feel the texture and temperature of the materials but even to discern their chemical compo- tion. Among the world of chemical sensors, optical devices (sometimes termed “optodes”, from the Greek “the optical way”) have reached a prominent place in those areas where the features of light and of the light-matter interaction show their advantage: contactless or long-distance interrogation, detection sensitivity, analyte selectivity, absence of electrical interference or risks, and lack of analyte consumption, to name just a few. The introduction of optical ?bres and integrated optics has added more value to such sensing since now light can be con?ned and readily carried to dif?cult-to-reach locations, higher information density can be transported, indicator dyes can be immobilised at the distal end or the evanescent ?eld for unique chemical and biochemical sensing (including multiplexed and distributed measurements), optical s- sors can now be subject to mass production and novel sensing schemes have been established (interferometric, surface plasmon resonance, ?uorescence energy transfer, supramolecular recognition . . . ).
The third edition of this established classic text reference builds upon the strengths of its very popular predecessors. Organized as a broadly useful textbook Principles of Fluorescence Spectroscopy, 3rd edition maintains its emphasis on basics, while updating the examples to include recent results from the scientific literature. The third edition includes new chapters on single molecule detection, fluorescence correlation spectroscopy, novel probes and radiative decay engineering. Includes a link to Springer Extras to download files reproducing all book artwork, for easy use in lecture slides. This is an essential volume for students, researchers, and industry professionals in biophysics, biochemistry, biotechnology, bioengineering, biology and medicine.
This second edition covers the fundamentals of smart biosensor technology, issues related to material design and selection, enabling methods of biosensor fabrication, bioelectronics and neuronal network micro-arrays, and applications that include pathogen detection, toxicity monitoring and lab-on-chip (LoC) technologies.
Applications of nucleic acids have developed recently to provide solutions for biosensors, diagnostic tools and as platforms for the assembly of complex structures. These developments have been possible as their base sequence can be used to assemble precise structures following simple and predictable rules. Self-assembled DNA can then be amplified using polymerase chain reaction (PCR) and this ultimately enables the preparation of synthetic nucleic acids. Their use as molecular tools or DNA-conjugates has recently been enhanced by the addition of other groups including enzymes, fluorophores and small molecules. Written by leaders in the field, this volume describes the preparation and application of these DNA-conjugates. Several have been used as sensors (aptamers, riboswitches and nanostructures) based on the ability of nucleic acids to adopt specific structures in the presence of ligands, whilst others link reporter groups such as proteins or fluorophores to RNA or DNA for detection, single molecule studies, and increasing the sensitivity of PCR. The book is relevant to researchers in areas related to analytical chemistry, chemical biology, medicinal chemistry, molecular pharmacology, and structural and molecular biology.
FRET – Förster Resonance Energy Transfer Meeting the need for an up-to-date and detailed primer on all aspects of the topic, this ready reference reflects the incredible expansion in the application of FRET and its derivative techniques over the past decade, especially in the biological sciences. This wide diversity is equally mirrored in the range of expert contributors. The book itself is clearly subdivided into four major sections. The first provides some background, theory, and key concepts, while the second section focuses on some common FRET techniques and applications, such as in vitro sensing and diagnostics, the determination of protein, peptide and other biological structures, as well as cellular biosensing with genetically encoded fluorescent indicators. The third section looks at recent developments, beginning with the use of fluorescent proteins, followed by a review of FRET usage with semiconductor quantum dots, along with an overview of multistep FRET. The text concludes with a detailed and greatly updated series of supporting tables on FRET pairs and Förster distances, together with some outlook and perspectives on FRET. Written for both the FRET novice and for the seasoned user, this is a must-have resource for office and laboratory shelves.
Volume 3 of this new series focuses on brandnew research and applications in biology, biophysics and other fields of life sciences. Many frontline researcher have contributed to this highly attractive and interdisciplinary volume which spans the entire field of present fluorescence spectroscopy including nanotechnology, membrane and DNA studies and fluorescence imaging in cancer research.