Download Free Toward Polymer Coatings With Easy Ice Release Book in PDF and EPUB Free Download. You can read online Toward Polymer Coatings With Easy Ice Release and write the review.

This comprehensive volume provides current, state-of-the-art information on specialty polymers that can be used for many advanced applications. The book covers the fundamentals of specialty polymers, synthetic approaches, and chemistries to modify their properties to meet the requirements for special applications, along with current challenges and prospects. Chapters are written by global experts, making this a suitable textbook for students and a one-stop resource for researchers and industry professionals. Key Features: - Presents synthesis, characterization, and applications of specialty polymers for advanced applications. - Provides fundamentals and requirements for polymers to be used in many advanced and emerging areas. - Details novel methods and advanced technologies used in polymer industries. - Covers the state-of-the-art progress on specialty polymers for a range of advanced applications.
Perfluoroalkyl and polyfluoroalkyl substances (PFASs) are extensively used in consumer products, despite their high persistence and other hazards. The risks posed by this chemical class to human health and the environment, which are increasingly becoming understood, have triggered regulation and policy changes. However, safer alternatives to these technically effective materials and methods to discover and use those alternatives are still under development. Remediation of PFAS contaminated sites will not solve the growing worldwide pollution, but substitution with safer substances at the formulation and manufacturing phases will at least abate the flow of PFASs into our bodies and environment. Introducing safer alternatives to some of the PFASs of concern used in select industry sectors, this book informs the reader about the processes of chemical hazard and alternatives assessment that can foster innovation. It is a valuable resource for both green chemists and industrial chemists interested in how they can make their products safer without compromising on function.
This unique book presents ways to mitigate the disastrous effects of snow/ice accumulation and discusses the mechanisms of new coatings deicing technologies. The strategies currently used to combat ice accumulation problems involve chemical, mechanical or electrical approaches. These are expensive and labor intensive, and the use of chemicals raises serious environmental concerns. The availability of truly icephobic surfaces or coatings will be a big boon in preventing the devastating effects of ice accumulation. Currently, there is tremendous interest in harnessing nanotechnology in rendering surfaces icephobic or in devising icephobic surface materials and coatings, and all signals indicate that such interest will continue unabated in the future. As the key issue regarding icephobic materials or coatings is their durability, much effort is being spent in developing surface materials or coatings which can be effective over a long period. With the tremendous activity in this arena, there is strong hope that in the not too distant future, durable surface materials or coatings will come to fruition. This book contains 20 chapters by subject matter experts and is divided into three parts— Part 1: Fundamentals of Ice Formation and Characterization; Part 2: Ice Adhesion and Its Measurement; and Part 3: Methods to Mitigate Ice Adhesion. The topics covered include: factors influencing the formation, adhesion and friction of ice; ice nucleation on solid surfaces; physics of ice nucleation and growth on a surface; condensation frosting; defrosting properties of structured surfaces; relationship between surface free energy and ice adhesion to surfaces; metrology of ice adhesion; test methods for quantifying ice adhesion strength to surfaces; interlaboratory studies of ice adhesion strength; mechanisms of surface icing and deicing technologies; icephobicities of superhydrophobic surfaces; anti-icing using microstructured surfaces; icephobic surfaces: features and challenges; bio-inspired anti-icing surface materials; durability of anti-icing coatings; durability of icephobic coatings; bio-inspired icephobic coatings; protection from ice accretion on aircraft; and numerical modeling and its application to inflight icing.
Smart materials have been produced by conceiving of the idea of materials/systems having a fourth dimension. To match advances in instrumentation, efforts are being made to develop materials, resulting in smart materials with enhanced performance. In nature, the action of stimuli-responsive materials is reversible; this idea has attracted interest for its potential research and industrial applications. The challenge remains how to couple these applications with environmental consciousness. This book presents the basics of smart polymers and describes their current and future applications. This book is different from other books on the subject in that it explores polymer materials’ smart behavior in more depth, covering vibration damping, thermal and electrochemical energy, sensing at trace level, biotechnology, and so on. The 14 chapters in this book cover diverse areas, including: • Photoresponsive polymers that can be manipulated using a specific frequency of light • Designing polymers for vibration damping • Smart manipulations of hydrophobic and super-hydrophobic polymers • Biopolymers, including hydrogels for smart application, drug delivery, and other uses • Smart paints • Self-healing and shape memory polymers • Holography for data storage • Phase change polymers and solid polymer electrolytes for thermal and electrochemical energy • Molecular imprinting polymers for sub-ppm sensing and removal of unwanted materials • Smart textiles, and the concept of advanced textiles This book will be of particular interest to researchers, postgraduates, and industry experts. It offers an extensive introduction to the basics of smart polymers and their possible applications.
Polymer-Based Nanoscale Materials for Surface Coatings presents the latest advances and emerging technologies in polymer-based nanomaterials for coatings, focusing on novel materials, characterization techniques, and cutting-edge applications. Sections present the fundamentals of surface preparation and nanocoatings, linking materials and properties, explaining the correlation between morphology, surface phenomena, and surface protection mechanism, and covering theory, modeling and simulation. Other presented topics cover characterization methods, with an emphasis on the latest developments in techniques and approaches. Aging and lifecycle assessment of coated surfaces and coatings are also discussed.Final sections explore advanced applications across a range of fields, including intelligent coatings for biomedical implants, self-healing coatings, syper-hydrophobicity, electroluminescence, sustainable edible coatings, marine antifouling, corrosion resistance, and photocatalytic coatings. - Explains the fundamentals of coatings and surface protection, mechanisms, materials and properties, and modeling and simulation - Presents detailed information on the latest characterization techniques to prepare nanoscale polymer coatings with enhanced properties - Explores a broad range of state-of-the-art applications and considers aging and lifecycle assessments of coatings
Polymer Coatings: Technologies and Applications provides a comprehensive account of the recent developments in polymer coatings encompassing novel methods, techniques, and a broad spectrum of applications. The chapters explore the key aspects of polymer coatings while highlighting fundamental research, different types of polymer coatings, and technology advances. This book also integrates the various aspects of these materials from synthesis to application. Current status, trends, future directions, and opportunities are also discussed. FEATURES Examines the basics to the most recent advances in all areas of polymer coatings Serves as a one-stop reference Discusses polymer-coated nanocrystals and coatings based on nanocomposites Describes morphology, spectroscopic analysis, adhesion, and rheology of polymer coatings Explores conducting, stimuli-responsive, self-healing, hydrophobic and hydrophilic, antifouling, and antibacterial polymer coatings Covers modeling and simulation With contributions from the top international researchers from industry, academia, government, and private research institutions, both new and experienced readers will benefit from this applications-oriented book. Sanjay Mavinkere Rangappa is a research scientist at the Natural Composites Research Group Lab, Academic Enhancement Department, King Mongkut’s University of Technology North Bangkok, Thailand. Jyotishkumar Parameswaranpillai is a research professor at the Center of Innovation in Design and Engineering for Manufacturing, King Mongkut’s University of Technology North Bangkok, Thailand. Suchart Siengchin is a professor at and president of King Mongkut’s University of Technology North Bangkok, Thailand.
Focusing on a variety of coatings, this book provides detailed discussion on preparation, novel techniques, recent developments, and design theories to present the advantages of each function and provide the tools for better product performance and properties. • Presents advantages and benefits of properties and applications of the novel coating types • Includes chapters on specific and novel coatings, like nanocomposite, surface wettability tunable, stimuli-responsive, anti-fouling, antibacterial, self-healing, and structural coloring • Provides detailed discussion on recent developments in the field as well as current and future perspectives • Acts as a guide for polymer and materials researchers in optimizing polymer coating properties and increasing product performance
This book guides readers through superhydrophobic coating fabrication and thier application, representing the latest significant advances in this important topic.
Marine biofouling can be defined as the undesirable accumulation of microorganisms, algae and animals on structures submerged in seawater. From the dawn of navigation, marine biofouling has been a major problem for shipping in such areas as reduced speed, higher fuel consumption and increased corrosion. It also affects industries using off-shore structures such as oil and gas production and aquaculture. Growing concerns about the environmental impact of antifouling coatings has led to major new research to develop more environmentally-friendly alternatives. Advances in marine antifouling coatings and technologies summaries this wealth of research and its practical implications.This book is divided into four sub-sections which discuss: marine fouling organisms and their impact, testing and development of antifouling coatings, developments in chemically-active marine antifouling technologies, and new surface approaches to the control of marine biofouling. It provides an authoritative overview of the recent advances in understanding the biology of fouling organisms, the latest developments on antifouling screening techniques both in the field and in the laboratory, research on safer active compounds and the progress on nontoxic coatings with tailor-made surface properties.With its distinguished editors and international team of contributors, Advances in marine antifouling coatings and technologies is a standard reference for manufacturers of marine antifouling solutions, the shipping industry, oil and gas producers, aquaculture and other industries using offshore structures, and academics researching this important area. - Assesses marine antifouling organisms and their impact, including a historical review and directions for future research - Discusses developments in antifouling coatings examining chemically-active and new surface approaches - Reviews the environmentally friendly alternative of safer active compounds and the progress of non-toxic compounds