Download Free Touching The Universe Book in PDF and EPUB Free Download. You can read online Touching The Universe and write the review.

This book is an innovative and unique astronomy book. It is a combination of Braille and large-print captions that face 14 pages of Hubble Space Telescope photos with embossed shapes that represent various astronomical objects such as planets, stars and jets of gas streaming into space.
The acclaimed author of Einstein’s Dreams tackles "big questions like the origin of the universe and the nature of consciousness ... in an entertaining and easily digestible way” (Wall Street Journal) with a collection of meditative essays on the possibilities—and impossibilities—of nothingness and infinity, and how our place in the cosmos falls somewhere in between. Can space be divided into smaller and smaller units, ad infinitum? Does space extend to larger and larger regions, on and on to infinity? Is consciousness reducible to the material brain and its neurons? What was the origin of life, and can biologists create life from scratch in the lab? Physicist and novelist Alan Lightman, whom The Washington Post has called “the poet laureate of science writers,” explores these questions and more—from the anatomy of a smile to the capriciousness of memory to the specialness of life in the universe to what came before the Big Bang. Probable Impossibilities is a deeply engaged consideration of what we know of the universe, of life and the mind, and of things vastly larger and smaller than ourselves.
An angst-ridden fictional memoir of Anita Liberty's last two years in high school is presented through diary entries, poems, sarcastic advice, scorecards of parental infractions, and definitions of SAT vocabulary words.
If scientists can’t touch the Sun, how do they know what it’s made of? And if we can’t see black holes, how can we be confident they exist? Gravitational physicist David Garfinkle and his brother, science fiction writer Richard Garfinkle, tackle these questions and more in Three Steps to the Universe, a tour through some of the most complex phenomena in the cosmos and an accessible exploration of how scientists acquire knowledge about the universe through observation, indirect detection, and theory. The authors begin by inviting readers to step away from the Earth and reconsider our Sun. What we can directly observe of this star is limited to its surface, but with the advent of telescopes and spectroscopy, scientists know more than ever about its physical characteristics, origins, and projected lifetime. From the Sun, the authors journey further out into space to explore black holes. The Garfinkle brothers explain that our understanding of these astronomical oddities began in theory, and growing mathematical and physical evidence has unexpectedly supported it. From black holes, the authors lead us further into the unknown, to the dark matter and energy that pervade our universe, where science teeters on the edge of theory and discovery. Returning from the depths of space, the final section of the book brings the reader back down to Earth for a final look at the practice of science, ending with a practical guide to discerning real science from pseudoscience among the cacophony of print and online scientific sources. Three Steps to the Universe will reward anyone interested in learning more about the universe around us and shows how scientists uncover its mysteries.
This book is an elementary introduction to geometric topology and its applications to chemistry, molecular biology, and cosmology. It does not assume any mathematical or scientific background, sophistication, or even motivation to study mathematics. It is meant to be fun and engaging while drawing students in to learn about fundamental topological and geometric ideas. Though the book can be read and enjoyed by nonmathematicians, college students, or even eager high school students, it is intended to be used as an undergraduate textbook. The book is divided into three parts corresponding to the three areas referred to in the title. Part 1 develops techniques that enable two- and three-dimensional creatures to visualize possible shapes for their universe and to use topological and geometric properties to distinguish one such space from another. Part 2 is an introduction to knot theory with an emphasis on invariants. Part 3 presents applications of topology and geometry to molecular symmetries, DNA, and proteins. Each chapter ends with exercises that allow for better understanding of the material. The style of the book is informal and lively. Though all of the definitions and theorems are explicitly stated, they are given in an intuitive rather than a rigorous form, with several hundreds of figures illustrating the exposition. This allows students to develop intuition about topology and geometry without getting bogged down in technical details.
An accessible look at the mysteries that lurk at the edge of the known universe and beyond The observable universe, the part we can see with telescopes, is incredibly vast. Yet recent theories suggest that there is far more to the universe than what our instruments record—in fact, it could be infinite. Colossal flows of galaxies, large empty regions called voids, and other unexplained phenomena offer clues that our own "bubble universe" could be part of a greater realm called the multiverse. How big is the observable universe? What it is made of? What lies beyond it? Was there a time before the Big Bang? Could space have unseen dimensions? In this book, physicist and science writer Paul Halpern explains what we know?and what we hope to soon find out?about our extraordinary cosmos. Explains what we know about the Big Bang, the accelerating universe, dark energy, dark flow, and dark matter to examine some of the theories about the content of the universe and why its edge is getting farther away from us faster Explores the idea that the observable universe could be a hologram and that everything that happens within it might be written on its edge Written by physicist and popular science writer Paul Halpern, whose other books include Collider: The Search for the World's Smallest Particles, and What's Science Ever Done For Us: What the Simpsons Can Teach Us About Physics, Robots, Life, and the Universe
The bestselling author of Einsteins Dreams explores the emotional and philosophical questions raised by recent discoveries in science with passion and curiosity. He looks at the dialogue between science and religion; the conflict between our human desire for permanence and the impermanence of nature; the possibility that our universe is simply an accident; the manner in which modern technology has separated us from direct experience of the world; and our resistance to the view that our bodies and minds can be explained by scientific logic and laws. Behind all of these considerations is the suggestion--at once haunting and exhilarating--that what we see and understand of the world is only a tiny piece of the extraordinary, perhaps unfathomable whole.
An astrophysicist recounts how her team of researchers surfed the cosmos to map our local universe—and discovered the Laniakea supercluster, home of the Milky Way. You are here: on Earth, which is part of the solar system, which is in the Milky Way galaxy, which itself is within the extragalactic supercluster Laniakea. And how can we pinpoint our location so precisely? For 20 years, astrophysicist Hélène Courtois surfed the cosmos with international teams of researchers, working to map our local universe. In this book, Courtois describes this quest and the discovery of our home supercluster. Courtois explains that Laniakea (which means “immense heaven” in Hawaiian) is the largest galaxy structure known to which we belong; it is huge, almost too large to comprehend—about 500 million light-years in diameter. It contains about 100,000 large galaxies like our own, and a million smaller ones. Writing accessibly for nonspecialists, Courtois describes the visualization and analysis that allowed her team to map such large structures of the universe. She highlights the work of individual researchers, including portraits of several exceptional women astrophysicists—presenting another side of astronomy. Key ideas are highlighted in text insets; illustrations accompany the main text. The French edition of this book was named the Best Astronomy Book of 2017 by the astronomy magazine Ciel et espace. For this MIT Press English-language edition, Courtois has added descriptions of discoveries made after Laniakea: the cosmic velocity web and the Dipole and Cold Spot repellers. An engaging account of one of the most important discoveries in astrophysics in recent years, her story is a tribute to teamwork and international collaboration.
Stephen Hawking s A Brief History of Time was a publishing phenomenon. Translated into thirty languages, it has sold over nine million copies worldwide. It continues to captivate and inspire new readers every year. When it was first published in 1988 the ideas discussed in it were at the cutting edge of what was then known about the universe. In the intervening years there have been extraordinary advances in our understanding of the space and time. The technology for observing the micro- and macro-cosmic world has developed in leaps and bounds. During the same period cosmology and the theoretical sciences have entered a new golden age. Professor Stephen Hawking has been at the heart of this new scientific renaissance. Now, in The Universe in a Nutshell, Stephen Hawking brings us fully up-to-date with the advances in scientific thinking. We are now nearer than we have ever been to a full understanding of the universe. In a fascinating and accessible discussion that ranges from quantum mechanics, to time travel, black holes to uncertainty theory, to the search for science s Holy Grail the unified field theory (or in layman s terms the theory of absolutely everything ) Professor Hawking once more takes us to the cutting edge of modern thinking. Beautifully illustrated throughout, with original artwork commissioned for this project, The Universe in a Nutshell is guaranteed to be the biggest science book of 2001.
A complete introduction to the heavens through the tales of these 21 key stars.