Download Free Total Simulation Book in PDF and EPUB Free Download. You can read online Total Simulation and write the review.

With the advance of new computing technology, simulation is becoming very popular for designing large, complex and stochastic engineering systems, since closed-form analytical solutions generally do not exist for such problems. However, the added flexibility of simulation often creates models that are computationally intractable. Moreover, to obtain a sound statistical estimate at a specified level of confidence, a large number of simulation runs (or replications) is usually required for each design alternative. If the number of design alternatives is large, the total simulation cost can be very expensive. Stochastic Simulation Optimization addresses the pertinent efficiency issue via smart allocation of computing resource in the simulation experiments for optimization, and aims to provide academic researchers and industrial practitioners with a comprehensive coverage of OCBA approach for stochastic simulation optimization. Starting with an intuitive explanation of computing budget allocation and a discussion of its impact on optimization performance, a series of OCBA approaches developed for various problems are then presented, from the selection of the best design to optimization with multiple objectives. Finally, this book discusses the potential extension of OCBA notion to different applications such as data envelopment analysis, experiments of design and rare-event simulation.
Highly computer-oriented text, introducing numerical methods and algorithms along with the applications and conceptual tools. Includes homework problems, suggestions for research projects, and open-ended questions at the end of each chapter. Written by our successful author who also wrote Continuous System Modeling, a best-selling Springer book first published in the 1991 (sold about 1500 copies).
Dieses Buch ist eine unschätzbare Informationsquelle für alle Ingenieure, Designer, Manager und Techniker bei Entwicklung, Studium und Anwendung einer großen Vielzahl von Simulationstechniken. Es vereint die Arbeit internationaler Simulationsexperten aus Industrie und Forschung. Alle Aspekte der Simulation werden in diesem umfangreichen Nachschlagewerk abgedeckt. Der Leser wird vertraut gemacht mit den verschiedenen Techniken von Industriesimulationen sowie mit Einsatz, Anwendungen und Entwicklungen. Neueste Fortschritte wie z.B. objektorientierte Programmierung werden ebenso behandelt wie Richtlinien für den erfolgreichen Umgang mit simulationsgestützten Prozessen. Auch gibt es eine Liste mit den wichtigsten Vertriebs- und Zulieferadressen. (10/98)
Reviews our current understanding of the subject. For graduate students and researchers in computational fluid dynamics and turbulence.
Building Software for Simulation A unique guide to the design and implementation of simulation software This book offers a concise introduction to the art of building simulation software, collecting the most important concepts and algorithms in one place. Written for both individuals new to the field of modeling and simulation as well as experienced practitioners, this guide explains the design and implementation of simulation software used in the engineering of large systems while presenting the relevant mathematical elements, concept discussions, and code development. The book approaches the topic from the perspective of Zeigler’s theory of modeling and simulation, introducing the theory’s fundamental concepts and showing how to apply them to engineering problems. Readers will learn five necessary skills for building simulations of complicated systems: Working with fundamental abstractions for simulating dynamic systems Developing basic simulation algorithms for continuous and discrete event models Combining continuous and discrete event simulations into a coherent whole Applying strategies for testing a simulation Understanding the theoretical foundations of the modeling constructs and simulation algorithms The central chapters of the book introduce, explain, and demonstrate the elements of the theory that are most important for building simulation tools. They are bracketed by applications to robotics, control and communications, and electric power systems; these comprehensive examples clearly illustrate how the concepts and algorithms are put to use. Readers will explore the design of object-oriented simulation programs, simulation using multi-core processors, and the integration of simulators into larger software systems. The focus on software makes this book particularly useful for computer science and computer engineering courses in simulation that focus on building simulators. It is indispensable reading for undergraduate and graduate students studying modeling and simulation, as well as for practicing scientists and engineers involved in the development of simulation tools.
This monograph is the first on physics-based simulations of novel strained Si and SiGe devices. It provides an in-depth description of the full-band monte-carlo method for SiGe and discusses the common theoretical background of the drift-diffusion, hydrodynamic and Monte-Carlo models and their synergy.
This unique volume introduces and discusses the methods of validating computer simulations in scientific research. The core concepts, strategies, and techniques of validation are explained by an international team of pre-eminent authorities, drawing on expertise from various fields ranging from engineering and the physical sciences to the social sciences and history. The work also offers new and original philosophical perspectives on the validation of simulations. Topics and features: introduces the fundamental concepts and principles related to the validation of computer simulations, and examines philosophical frameworks for thinking about validation; provides an overview of the various strategies and techniques available for validating simulations, as well as the preparatory steps that have to be taken prior to validation; describes commonly used reference points and mathematical frameworks applicable to simulation validation; reviews the legal prescriptions, and the administrative and procedural activities related to simulation validation; presents examples of best practice that demonstrate how methods of validation are applied in various disciplines and with different types of simulation models; covers important practical challenges faced by simulation scientists when applying validation methods and techniques; offers a selection of general philosophical reflections that explore the significance of validation from a broader perspective. This truly interdisciplinary handbook will appeal to a broad audience, from professional scientists spanning all natural and social sciences, to young scholars new to research with computer simulations. Philosophers of science, and methodologists seeking to increase their understanding of simulation validation, will also find much to benefit from in the text.
This Proceedings book reports on new and innovative solutions regarding methodologies and applications of modeling and simulation. It includes a set of selected, extended papers from the 6th International Conference on Simulation and Modeling Methodologies, Technologies and Applications (SIMULTECH 2016), held in Lisbon, Portugal, from 29 to 31 July, 2016. The conference brought together researchers, engineers and practitioners interested in methodologies and applications of modeling and simulation. SIMULTECH 2016 received 76 submissions from 35 countries and all continents. After a double-blind paper review performed by the Program Committee, 18% were accepted as full papers and thus selected for oral presentations. Additional papers were accepted as short papers and posters. A further selection was made after the Conference, based also on the assessment of presentation quality and audience interest, so that this book includes the extended and revised versions of the very best papers from SIMULTECH 2016.