Download Free Toroidal Groups Book in PDF and EPUB Free Download. You can read online Toroidal Groups and write the review.

Toroidal groups are the connecting link between torus groups and any complex Lie groups. Many properties of complex Lie groups such as the pseudoconvexity and cohomology are determined by their maximal toroidal subgroups. Quasi-Abelian varieties are meromorphically separable toroidal groups. They are the natural generalisation of the Abelian varieties. Nevertheless, their behavior can be completely different as the wild groups show.
Algebraic groups play much the same role for algebraists as Lie groups play for analysts. This book is the first comprehensive introduction to the theory of algebraic group schemes over fields that includes the structure theory of semisimple algebraic groups, and is written in the language of modern algebraic geometry. The first eight chapters study general algebraic group schemes over a field and culminate in a proof of the Barsotti–Chevalley theorem, realizing every algebraic group as an extension of an abelian variety by an affine group. After a review of the Tannakian philosophy, the author provides short accounts of Lie algebras and finite group schemes. The later chapters treat reductive algebraic groups over arbitrary fields, including the Borel–Chevalley structure theory. Solvable algebraic groups are studied in detail. Prerequisites have also been kept to a minimum so that the book is accessible to non-specialists in algebraic geometry.
This self-contained text is an excellent introduction to Lie groups and their actions on manifolds. The authors start with an elementary discussion of matrix groups, followed by chapters devoted to the basic structure and representation theory of finite dimensinal Lie algebras. They then turn to global issues, demonstrating the key issue of the interplay between differential geometry and Lie theory. Special emphasis is placed on homogeneous spaces and invariant geometric structures. The last section of the book is dedicated to the structure theory of Lie groups. Particularly, they focus on maximal compact subgroups, dense subgroups, complex structures, and linearity. This text is accessible to a broad range of mathematicians and graduate students; it will be useful both as a graduate textbook and as a research reference.
This volume consists of papers presented in the special sessions on "Complex and Numerical Analysis", "Value Distribution Theory and Complex Domains", and "Use of Symbolic Computation in Mathematics Education" of the ISAAC'97 Congress held at the University of Delaware, during June 2-7, 1997. The ISAAC Congress coincided with a U.S.-Japan Seminar also held at the University of Delaware. The latter was supported by the National Science Foundation through Grant INT-9603029 and the Japan Society for the Promotion of Science through Grant MTCS-134. It was natural that the participants of both meetings should interact and consequently several persons attending the Congress also presented papers in the Seminar. The success of the ISAAC Congress and the U.S.-Japan Seminar has led to the ISAAC'99 Congress being held in Fukuoka, Japan during August 1999. Many of the same participants will return to this Seminar. Indeed, it appears that the spirit of the U.S.-Japan Seminar will be continued every second year as part of the ISAAC Congresses. We decided to include with the papers presented in the ISAAC Congress and the U.S.-Japan Seminar several very good papers by colleagues from the former Soviet Union. These participants in the ISAAC Congress attended at their own expense.
The book, suitable as both an introductory reference and as a text book in the rapidly growing field of topological graph theory, models both maps (as in map-coloring problems) and groups by means of graph imbeddings on sufaces. Automorphism groups of both graphs and maps are studied. In addition connections are made to other areas of mathematics, such as hypergraphs, block designs, finite geometries, and finite fields. There are chapters on the emerging subfields of enumerative topological graph theory and random topological graph theory, as well as a chapter on the composition of English church-bell music. The latter is facilitated by imbedding the right graph of the right group on an appropriate surface, with suitable symmetries. Throughout the emphasis is on Cayley maps: imbeddings of Cayley graphs for finite groups as (possibly branched) covering projections of surface imbeddings of loop graphs with one vertex. This is not as restrictive as it might sound; many developments in topological graph theory involve such imbeddings.The approach aims to make all this interconnected material readily accessible to a beginning graduate (or an advanced undergraduate) student, while at the same time providing the research mathematician with a useful reference book in topological graph theory. The focus will be on beautiful connections, both elementary and deep, within mathematics that can best be described by the intuitively pleasing device of imbedding graphs of groups on surfaces.
The papers showcase the breadth of discrete geometry through many new methods and results in a variety of topics. Also included are survey articles on some important areas of active research. This volume is aimed at researchers in discrete and convex geometry and researchers who work with abstract polytopes or string C C-groups. It is also aimed at early career mathematicians, including graduate students and postdoctoral fellows, to give them a glimpse of the variety and beauty of these research areas. Topics covered in this volume include: the combinatorics, geometry, and symmetries of convex polytopes; tilings; discrete point sets; the combinatorics of Eulerian posets and interval posets; symmetries of surfaces and maps on surfaces; self-dual polytopes; string C C-groups; hypertopes; and graph coloring.
The Handbook of Graph Theory is the most comprehensive single-source guide to graph theory ever published. Best-selling authors Jonathan Gross and Jay Yellen assembled an outstanding team of experts to contribute overviews of more than 50 of the most significant topics in graph theory-including those related to algorithmic and optimization approach
New Trends in Control Theory is a graduate-level monographic textbook. It is a contemporary overview of modern trends in control theory. The introductory chapter gives the geometrical and quantum background, which is a necessary minimum for comprehensive reading of the book. The second chapter gives the basics of classical control theory, both linear and nonlinear. The third chapter shows the key role that Euclidean group of rigid motions plays in modern robotics and biomechanics. The fourth chapter gives an overview of modern quantum control, from both theoretical and measurement perspectives. The fifth chapter presents modern control and synchronization methods in complex systems and human crowds. The appendix provides the rest of the background material complementary to the introductory chapter. The book is designed as a one-semester course for engineers, applied mathematicians, computer scientists and physicists, both in industry and academia. It includes a most relevant bibliography on the subject and detailed index.