Download Free Topology In Real World Machine Learning And Data Analysis Book in PDF and EPUB Free Download. You can read online Topology In Real World Machine Learning And Data Analysis and write the review.

Topological data analysis (TDA) has emerged recently as a viable tool for analyzing complex data, and the area has grown substantially both in its methodologies and applicability. Providing a computational and algorithmic foundation for techniques in TDA, this comprehensive, self-contained text introduces students and researchers in mathematics and computer science to the current state of the field. The book features a description of mathematical objects and constructs behind recent advances, the algorithms involved, computational considerations, as well as examples of topological structures or ideas that can be used in applications. It provides a thorough treatment of persistent homology together with various extensions – like zigzag persistence and multiparameter persistence – and their applications to different types of data, like point clouds, triangulations, or graph data. Other important topics covered include discrete Morse theory, the Mapper structure, optimal generating cycles, as well as recent advances in embedding TDA within machine learning frameworks.
This timely text introduces topological data analysis from scratch, with detailed case studies.
This welcome boon for students of algebraic topology cuts a much-needed central path between other texts whose treatment of the classification theorem for compact surfaces is either too formalized and complex for those without detailed background knowledge, or too informal to afford students a comprehensive insight into the subject. Its dedicated, student-centred approach details a near-complete proof of this theorem, widely admired for its efficacy and formal beauty. The authors present the technical tools needed to deploy the method effectively as well as demonstrating their use in a clearly structured, worked example. Ideal for students whose mastery of algebraic topology may be a work-in-progress, the text introduces key notions such as fundamental groups, homology groups, and the Euler-Poincaré characteristic. These prerequisites are the subject of detailed appendices that enable focused, discrete learning where it is required, without interrupting the carefully planned structure of the core exposition. Gently guiding readers through the principles, theory, and applications of the classification theorem, the authors aim to foster genuine confidence in its use and in so doing encourage readers to move on to a deeper exploration of the versatile and valuable techniques available in algebraic topology.
Ever since the literary works of Capek and Asimov, mankind has been fascinated by the idea of robots. Modern research in robotics reveals that along with many other branches of mathematics, topology has a fundamental role to play in making these grand ideas a reality. This volume summarizes recent progress in the field of topological robotics--a new discipline at the crossroads of topology, engineering and computer science. Currently, topological robotics is developing in two main directions. On one hand, it studies pure topological problems inspired by robotics and engineering. On the other hand, it uses topological ideas, topological language, topological philosophy, and specially developed tools of algebraic topology to solve problems of engineering and computer science. Examples of research in both these directions are given by articles in this volume, which is designed to be a mixture of various interesting topics of pure mathematics and practical engineering.
"Topology" is an introductory book that explores the basic concepts and principles of topology, a branch of mathematics focused on the properties of space that remain unchanged through continuous transformations. Aimed at absolute beginners, this book simplifies complex ideas with clear explanations and relatable examples, making it easy for readers to grasp foundational topics like shapes, spaces, and their relationships. Whether you're a student or simply curious about the world of mathematics, this book serves as a friendly guide to understanding the fascinating field of topology.
Homology is a powerful tool used by mathematicians to study the properties of spaces and maps that are insensitive to small perturbations. This book uses a computer to develop a combinatorial computational approach to the subject. The core of the book deals with homology theory and its computation. Following this is a section containing extensions to further developments in algebraic topology, applications to computational dynamics, and applications to image processing. Included are exercises and software that can be used to compute homology groups and maps. The book will appeal to researchers and graduate students in mathematics, computer science, engineering, and nonlinear dynamics.
This book constitutes the refereed joint proceedings of the 4th International Workshop on Interpretability of Machine Intelligence in Medical Image Computing, iMIMIC 2020, and the First International Workshop on Topological Data Analysis and Its Applications for Medical Data, TDA4MedicalData 2021, held on September 27, 2021, in conjunction with the 24th International Conference on Medical Imaging and Computer-Assisted Intervention, MICCAI 2021. The 7 full papers presented at iMIMIC 2021 and 5 full papers held at TDA4MedicalData 2021 were carefully reviewed and selected from 12 submissions each. The iMIMIC papers focus on introducing the challenges and opportunities related to the topic of interpretability of machine learning systems in the context of medical imaging and computer assisted intervention. TDA4MedicalData is focusing on using TDA techniques to enhance the performance, generalizability, efficiency, and explainability of the current methods applied to medical data.
This collection of peer-reviewed workshop papers provides comprehensive coverage of cutting-edge research into topological approaches to data analysis and visualization. It encompasses the full range of new algorithms and insights, including fast homology computation, comparative analysis of simplification techniques, and key applications in materials and medical science. The book also addresses core research challenges such as the representation of large and complex datasets, and integrating numerical methods with robust combinatorial algorithms. In keeping with the focus of the TopoInVis 2017 Workshop, the contributions reflect the latest advances in finding experimental solutions to open problems in the sector. They provide an essential snapshot of state-of-the-art research, helping researchers to keep abreast of the latest developments and providing a basis for future work. Gathering papers by some of the world’s leading experts on topological techniques, the book represents a valuable contribution to a field of growing importance, with applications in disciplines ranging from engineering to medicine.
With the recent and enormous increase in the amount of available data sets of all kinds, applying effective and efficient techniques for analyzing and extracting information from that data has become a crucial task. Intelligent Data Analysis for Real-Life Applications: Theory and Practice investigates the application of Intelligent Data Analysis (IDA) to these data sets through the design and development of algorithms and techniques to extract knowledge from databases. This pivotal reference explores practical applications of IDA, and it is essential for academic and research libraries as well as students, researchers, and educators in data analysis, application development, and database management.