Download Free Topology And Physics Of Circular Dna 1992 Book in PDF and EPUB Free Download. You can read online Topology And Physics Of Circular Dna 1992 and write the review.

Topology and Physics of Circular DNA presents comprehensive coverage of the physical properties of circular DNA. The author examines how topological constraints arising from cyclization of DNA lead to distinctive properties that make closed molecules radically different from linear DNA. The phenomenon of supercoiling, its geometric and topological analysis, and the formation of noncanonical structures in circular DNA under the influence of supercoiling are emphasized. The combination of consistent theoretical analysis and detailed treatment of major experimental approaches make Topology and Physics of Circular DNA an important reference volume for biophysicists, biochemists, molecular biologists, and researchers and students who want to expand their understanding of circular DNA.
Topology and Physics of Circular DNA presents comprehensive coverage of the physical properties of circular DNA. The author examines how topological constraints arising from cyclization of DNA lead to distinctive properties that make closed molecules radically different from linear DNA. The phenomenon of supercoiling, its geometric and topological analysis, and the formation of noncanonical structures in circular DNA under the influence of supercoiling are emphasized. The combination of consistent theoretical analysis and detailed treatment of major experimental approaches make Topology and Physics of Circular DNA an important reference volume for biophysicists, biochemists, molecular biologists, and researchers and students who want to expand their understanding of circular DNA.
First multi-year cumulation covers six years: 1965-70.
This volume focuses on the interactions between mathematics, physics, biology and neuroscience by exploring new geometrical and topological modelling in these fields. Among the highlights are the central roles played by multilevel and scale-change approaches in these disciplines. The integration of mathematics with physics, as well as molecular and cell biology and the neurosciences, will constitute the new frontier of 21st century science, where breakthroughs are more likely to span across traditional disciplines.
Cyclic Polymers (Second Edition) reviews the many recent advances in this rapidly expanding subject since the publication of the first edition in 1986. The preparation, characterisation, properties and applications of a wide range of organic and inorganic cyclic oligomers and polymers are described in detail, together with many examples of catenanes and rotaxanes. The importance of large cyclics in biological chemistry and molecular biology is emphasised by a wide coverage of circular DNA, cyclic peptides and cyclic oligosaccharides and polysaccharides. Experimental techniques and theoretical aspects of cyclic polymers are included, as well as examples of their uses such as ring opening polymerisation reactions to give commercially important materials. This book covers a wide range of topics which should be of interest to many scientific research workers (for example, in polymer science, chemistry and molecular biology), as well as providing a reference text for undergraduate and graduate students.
Louis Kauffman discusses applications of knot theory to physics, Nadrian Seeman discusses how topology is used in DNA nanotechnology, and Jonathan Simon discusses the statistical and energetic properties of knots and their relation to molecular biology."--BOOK JACKET.
A physicist's guide to the phenomena of life Interactions between the fields of physics and biology reach back over a century, and some of the most significant developments in biology—from the discovery of DNA's structure to imaging of the human brain—have involved collaboration across this disciplinary boundary. For a new generation of physicists, the phenomena of life pose exciting challenges to physics itself, and biophysics has emerged as an important subfield of this discipline. Here, William Bialek provides the first graduate-level introduction to biophysics aimed at physics students. Bialek begins by exploring how photon counting in vision offers important lessons about the opportunities for quantitative, physics-style experiments on diverse biological phenomena. He draws from these lessons three general physical principles—the importance of noise, the need to understand the extraordinary performance of living systems without appealing to finely tuned parameters, and the critical role of the representation and flow of information in the business of life. Bialek then applies these principles to a broad range of phenomena, including the control of gene expression, perception and memory, protein folding, the mechanics of the inner ear, the dynamics of biochemical reactions, and pattern formation in developing embryos. Featuring numerous problems and exercises throughout, Biophysics emphasizes the unifying power of abstract physical principles to motivate new and novel experiments on biological systems. Covers a range of biological phenomena from the physicist's perspective Features 200 problems Draws on statistical mechanics, quantum mechanics, and related mathematical concepts Includes an annotated bibliography and detailed appendixes
Despite remarkable progress in genome science, we are still far from a clear understanding of how genomic DNA is packaged without entanglement into a nucleus, how genes are wrapped up in chromatin, how chromatin structure is faithfully inherited from mother to daughter cells, and how the differential expression of genes is enabled in a given cell type. Exploring and answering these questions constitutes one of the next frontiers in the 21st century. We are just beginning to appreciate how Multifarious DNA structures provide additional structural and functional dimensions to chromatin organization and gene expression. DNA Conformation and Transcription is the first book that compiles the fruits of the studies that have been performed to date to solve the riddle ‘written’ in DNA conformation ("conformation code"). This book provides a comprehensive overview of the field by covering history of the field, up-to-date topics, clarifications of present day research, and future perspective of what is still to be discovered. Thus, it serves as an invaluable source of information on the "conformation code".
Biomedical research will be revolutionised by the current efforts to sequence the human genome and the genomes of model organisms. Of the newly sequenced genes, 50% code for proteins of unknown functions, while as little as 5% of sequences in mammalian genomes code for proteins. New, genome-wide approaches are needed to draw together the knowledge that is emerging simultaneously in a number of fields of genome research. This volume is a high-level survey of the newly emerging concepts of structural biology and functional genomics for biologists, biochemists and medical researchers interested in genome research. Topics included are chromosome and chromatin organisation, novel DNA and RNA structures, DNA flexibility, supercoiling, prediction of protein functions, strategies for large scale structural analysis, and computer modelling.