Download Free Topological Transformations Book in PDF and EPUB Free Download. You can read online Topological Transformations and write the review.

The author has published many papers and books on topological transformations for optimal analysis of structures, where many methods and algorithms are developed. However, the framework of this book generalizes many concepts and makes the previously developed methods conceptually more attractive. The aim of the present work is two folds. On the one hand, it shows to mathematicians how the apparently pure mathematical concepts can be applied to the efficient solution of problems in structural mechanics. On the other hand, it illustrates to engineers the important role of mathematical concepts for the solution of engineering problems. The present framework provides efficient means for looking at problems and developing ideas by transforming the models (structures, networks, systems) to other spaces (higher dimension, lower dimension, or identical dimension) to simplify the problems. This book is attractive for those who look at the deeper aspects of concepts and helps the reader to develop his/her own ideas. In general, it opens a new horizon for improving the existing methods in civil, mechanical, and electrical engineering.
Historically, applications of algebraic topology to the study of topological transformation groups were originated in the work of L. E. 1. Brouwer on periodic transformations and, a little later, in the beautiful fixed point theorem ofP. A. Smith for prime periodic maps on homology spheres. Upon comparing the fixed point theorem of Smith with its predecessors, the fixed point theorems of Brouwer and Lefschetz, one finds that it is possible, at least for the case of homology spheres, to upgrade the conclusion of mere existence (or non-existence) to the actual determination of the homology type of the fixed point set, if the map is assumed to be prime periodic. The pioneer result of P. A. Smith clearly suggests a fruitful general direction of studying topological transformation groups in the framework of algebraic topology. Naturally, the immediate problems following the Smith fixed point theorem are to generalize it both in the direction of replacing the homology spheres by spaces of more general topological types and in the direction of replacing the group tl by more general compact groups.
This book introduces polyhedra as a tool for graph theory and discusses their properties and applications in solving the Gauss crossing problem. The discussion is extended to embeddings on manifolds, particularly to surfaces of genus zero and non-zero via the joint tree model, along with solution algorithms. Given its rigorous approach, this book would be of interest to researchers in graph theory and discrete mathematics.
Excellent text covers vector fields, plane homology and the Jordan Curve Theorem, surfaces, homology of complexes, more. Problems and exercises. Some knowledge of differential equations and multivariate calculus required.Bibliography. 1979 edition.
An advanced monograph on the subject of topological transformation groups, this volume summarizes important research conducted during a period of lively activity in this area of mathematics. The book is of particular note because it represents the culmination of research by authors Deane Montgomery and Leo Zippin, undertaken in collaboration with Andrew Gleason of Harvard University, that led to their solution of a well-known mathematical conjecture, Hilbert's Fifth Problem. The treatment begins with an examination of topological spaces and groups and proceeds to locally compact groups and groups with no small subgroups. Subsequent chapters address approximation by Lie groups and transformation groups, concluding with an exploration of compact transformation groups.
This book presents 13 peer-reviewed papers as written results from the 2005 workshop "Topology-Based Methods in Visualization" that was initiated to enable additional stimulation in this field. It contains a survey of the state-of-the-art, as well original work by leading experts that has not been published before, spanning both theory and applications. It captures key concepts and novel ideas and serves as an overview of current trends in its subject.
The goal of this book is to investigate further the interdisciplinary interaction between Mathematical Analysis and Topology. It provides an attempt to study various approaches in the topological applications and influence to Function Theory, Calculus of Variations, Functional Analysis and Approximation Theory. The volume is dedicated to the memory of S Stoilow.
In this book, which may be used as a self-contained text for a beginning course, Professor Lefschetz aims to give the reader a concrete working knowledge of the central concepts of modern combinatorial topology: complexes, homology groups, mappings in spheres, homotopy, transformations and their fixed points, manifolds and duality theorems. Each chapter ends with a group of problems. Originally published in 1949. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.