Download Free Topological And Quantum Group Methods In Field Theory And Condensed Matter Physics Book in PDF and EPUB Free Download. You can read online Topological And Quantum Group Methods In Field Theory And Condensed Matter Physics and write the review.

Providing a broad review of many techniques and their application to condensed matter systems, this book begins with a review of thermodynamics and statistical mechanics, before moving onto real and imaginary time path integrals and the link between Euclidean quantum mechanics and statistical mechanics. A detailed study of the Ising, gauge-Ising and XY models is included. The renormalization group is developed and applied to critical phenomena, Fermi liquid theory and the renormalization of field theories. Next, the book explores bosonization and its applications to one-dimensional fermionic systems and the correlation functions of homogeneous and random-bond Ising models. It concludes with Bohm–Pines and Chern–Simons theories applied to the quantum Hall effect. Introducing the reader to a variety of techniques, it opens up vast areas of condensed matter theory for both graduate students and researchers in theoretical, statistical and condensed matter physics.
For most of the last century, condensed matter physics has been dominated by band theory and Landau's symmetry breaking theory. In the last twenty years, however, there has been the emergence of a new paradigm associated with fractionalisation, topological order, emergent gauge bosons and fermions, and string condensation. These new physical concepts are so fundamental that they may even influence our understanding of the origin of light and fermions in the universe. This book is a pedagogical and systematic introduction to the new concepts and quantum field theoretical methods (which have fuelled the rapid developments) in condensed matter physics. It discusses many basic notions in theoretical physics which underlie physical phenomena in nature. Topics covered are dissipative quantum systems, boson condensation, symmetry breaking and gapless excitations, phase transitions, Fermi liquids, spin density wave states, Fermi and fractional statistics, quantum Hall effects, topological and quantum order, spin liquids, and string condensation. Methods covered are the path integral, Green's functions, mean-field theory, effective theory, renormalization group, bosonization in one- and higher dimensions, non-linear sigma-model, quantum gauge theory, dualities, slave-boson theory, and exactly soluble models beyond one-dimension. This book is aimed at teaching graduate students and bringing them to the frontiers of research in condensed matter physics.
This primer is aimed at elevating graduate students of condensed matter theory to a level where they can engage in independent research. Topics covered include second quantisation, path and functional field integration, mean-field theory and collective phenomena.
In recent years topology has firmly established itself as an important part of the physicist's mathematical arsenal. It has many applications, first of all in quantum field theory, but increasingly also in other areas of physics. The main focus of this book is on the results of quantum field theory that are obtained by topological methods. Some aspects of the theory of condensed matter are also discussed. Part I is an introduction to quantum field theory: it discusses the basic Lagrangians used in the theory of elementary particles. Part II is devoted to the applications of topology to quantum field theory. Part III covers the necessary mathematical background in summary form. The book is aimed at physicists interested in applications of topology to physics and at mathematicians wishing to familiarize themselves with quantum field theory and the mathematical methods used in this field. It is accessible to graduate students in physics and mathematics.
The application of field theoretic techniques to problems in condensed matter physics has generated an array of concepts and mathematical techniques to attack a range of problems such as the theory of quantum phase transitions, the quantum Hall effect, and quantum wires. While concepts such as the renormalization group, topology, and bosonization h
Based on an established course, this comprehensive textbook on advanced quantum condensed matter physics covers one-body, many-body and topological perspectives. Discussing modern topics and containing end-of-chapter exercises throughout, it is ideal for graduate students studying advanced condensed matter physics.
Presenting the physics of the most challenging problems in condensed matter using the conceptual framework of quantum field theory, this book is of great interest to physicists in condensed matter and high energy and string theorists, as well as mathematicians. Revised and updated, this second edition features new chapters on the renormalization group, the Luttinger liquid, gauge theory, topological fluids, topological insulators and quantum entanglement. The book begins with the basic concepts and tools, developing them gradually to bring readers to the issues currently faced at the frontiers of research, such as topological phases of matter, quantum and classical critical phenomena, quantum Hall effects and superconductors. Other topics covered include one-dimensional strongly correlated systems, quantum ordered and disordered phases, topological structures in condensed matter and in field theory and fractional statistics.
The book is an introduction to quantum field theory applied to condensed matter physics. The topics cover modern applications in electron systems and electronic properties of mesoscopic systems and nanosystems. The textbook is developed for a graduate or advanced undergraduate course with exercises which aim at giving students the ability to confront real problems.
A balanced combination of introductory and advanced topics provides a new and unique perspective on the quantum field theory approach to condensed matter physics. Beginning with the basics of these subjects, such as static and vibrating lattices, independent and interacting electrons, the functional formulation for fields and different generating functionals and their roles, this book presents a unified viewpoint illustrating the connections and relationships among various physical concepts and mechanisms. Advanced and newer topics bring the book up to date with current developments and include sections on cuprate and pnictide superconductors, graphene, Weyl semimetals, transition metal dichalcogenides and topological insulators. Finally, well-known subjects such as the quantum Hall effect, superconductivity, Mott and Anderson insulators, and the Anderson–Higgs mechanism are examined within a unifying QFT-CMP approach. Presenting new insights on traditional topics, this text allows graduate students and researchers to master the proper theoretical tools required in a variety of condensed matter physics systems.