Download Free Topics On Chaotic Systems Book in PDF and EPUB Free Download. You can read online Topics On Chaotic Systems and write the review.

This book reports on the latest advances and applications of chaotic systems. It consists of 25 contributed chapters by experts who are specialized in the various topics addressed in this book. The chapters cover a broad range of topics of chaotic systems such as chaos, hyperchaos, jerk systems, hyperjerk systems, conservative and dissipative systems, circulant chaotic systems, multi-scroll chaotic systems, finance chaotic system, highly chaotic systems, chaos control, chaos synchronization, circuit realization and applications of chaos theory in secure communications, mobile robot, memristors, cellular neural networks, etc. Special importance was given to chapters offering practical solutions, modeling and novel control methods for the recent research problems in chaos theory. This book will serve as a reference book for graduate students and researchers with a basic knowledge of chaos theory and control systems. The resulting design procedures on the chaotic systems are emphasized using MATLAB software.
This volume includes the best papers presented at the CHAOS 2008 International Conference on Chaotic Modeling, Simulation and Applications. It provides a valuable collection of new ideas, methods, and techniques in the field of nonlinear dynamics, chaos, fractals and their applications in general science and in engineering sciences. It touches on many fields such as chaos, dynamical systems, nonlinear systems, fractals and chaotic attractors. It also covers mechanics, hydrofluid dynamics, chaos in meteorology and cosmology, Hamiltonian and quantum chaos, chaos in biology and genetics, chaotic control, and chaos in economy and markets, and chaotic simulations; thus, containing cutting-edge interdisciplinary research with high-interest applications. These contributions present new solutions by analyzing the relevant data and through the use of recent advances in different fields, especially in chaotic simulation methods and techniques.
This book presents a collection of new articles written by world-leading experts and active researchers to present their recent finding and progress in the new area of chaotic systems and dynamics, regarding emerging subjects of unconventional chaotic systems and their complex dynamics.It guide readers directly to the research front of the new scientific studies. This book is unique of its kind in the current literature, presenting broad scientific research topics including multistability and hidden attractors in unconventional chaotic systems, such as chaotic systems without equilibria, with only stable equilibria, with a curve or a surface of equilibria. The book describes many novel phenomena observed from chaotic systems, such as non-Shilnikov type chaos, coexistence of different types of attractors, and spontaneous symmetry breaking in chaotic systems. The book presents state-of-the-art scientific research progress in the field with both theoretical advances and potential applications. This book is suitable for all researchers and professionals in the areas of nonlinear dynamics and complex systems, including research professionals, physicists, applied mathematicians, computer scientists and, in particular, graduate students in related fields.
Introduction to the concepts, applications, theory, and technique of chaos. Suitable for advanced undergraduates and graduate students and researchers. Requires familiarity with differential equations and linear vector spaces. 1990 edition.
Chaos: from simple models to complex systems aims to guide science and engineering students through chaos and nonlinear dynamics from classical examples to the most recent fields of research. The first part, intended for undergraduate and graduate students, is a gentle and self-contained introduction to the concepts and main tools for the characterization of deterministic chaotic systems, with emphasis to statistical approaches. The second part can be used as a reference by researchers as it focuses on more advanced topics including the characterization of chaos with tools of information theory and applications encompassing fluid and celestial mechanics, chemistry and biology. The book is novel in devoting attention to a few topics often overlooked in introductory textbooks and which are usually found only in advanced surveys such as: information and algorithmic complexity theory applied to chaos and generalization of Lyapunov exponents to account for spatiotemporal and non-infinitesimal perturbations. The selection of topics, numerous illustrations, exercises and proposals for computer experiments make the book ideal for both introductory and advanced courses. Sample Chapter(s). Introduction (164 KB). Chapter 1: First Encounter with Chaos (1,323 KB). Contents: First Encounter with Chaos; The Language of Dynamical Systems; Examples of Chaotic Behaviors; Probabilistic Approach to Chaos; Characterization of Chaotic Dynamical Systems; From Order to Chaos in Dissipative Systems; Chaos in Hamiltonian Systems; Chaos and Information Theory; Coarse-Grained Information and Large Scale Predictability; Chaos in Numerical and Laboratory Experiments; Chaos in Low Dimensional Systems; Spatiotemporal Chaos; Turbulence as a Dynamical System Problem; Chaos and Statistical Mechanics: Fermi-Pasta-Ulam a Case Study. Readership: Students and researchers in science (physics, chemistry, mathematics, biology) and engineering.
This book treats nonlinear dynamics in both Hamiltonian and dissipative systems. The emphasis is on the mechanics for generating chaotic motion, methods of calculating the transitions from regular to chaotic motion, and the dynamical and statistical properties of the dynamics when it is chaotic. The new edition brings the subject matter in a rapidly expanding field up to date, and has greatly expanded the treatment of dissipative dynamics to include most important subjects.
The study of nonlinear dynamical systems has exploded in the past 25 years, and Robert L. Devaney has made these advanced research developments accessible to undergraduate and graduate mathematics students as well as researchers in other disciplines with the introduction of this widely praised book. In this second edition of his best-selling text, Devaney includes new material on the orbit diagram fro maps of the interval and the Mandelbrot set, as well as striking color photos illustrating both Julia and Mandelbrot sets. This book assumes no prior acquaintance with advanced mathematical topics such as measure theory, topology, and differential geometry. Assuming only a knowledge of calculus, Devaney introduces many of the basic concepts of modern dynamical systems theory and leads the reader to the point of current research in several areas.
This textbook is aimed at newcomers to nonlinear dynamics and chaos, especially students taking a first course in the subject. The presentation stresses analytical methods, concrete examples, and geometric intuition. The theory is developed systematically, starting with first-order differential equations and their bifurcations, followed by phase plane analysis, limit cycles and their bifurcations, and culminating with the Lorenz equations, chaos, iterated maps, period doubling, renormalization, fractals, and strange attractors.
This book presents the proceedings of the “5th International Interdisciplinary Chaos Symposium on Chaos and Complex Systems (CCS).” All Symposia in the series bring together scientists, engineers, economists and social scientists, creating a vivid forum for discussions on the latest insights and findings obtained in the areas of complexity, nonlinear dynamics and chaos theory, as well as their interdisciplinary applications. The scope of the latest Symposium was enriched with a variety of contemporary, interdisciplinary topics, including but not limited to: fundamental theory of nonlinear dynamics, networks, circuits, systems, biology, evolution and ecology, fractals and pattern formation, nonlinear time series analysis, neural networks, sociophysics and econophysics, complexity management and global systems.
BACKGROUND Sir Isaac Newton hrought to the world the idea of modeling the motion of physical systems with equations. It was necessary to invent calculus along the way, since fundamental equations of motion involve velocities and accelerations, of position. His greatest single success was his discovery that which are derivatives the motion of the planets and moons of the solar system resulted from a single fundamental source: the gravitational attraction of the hodies. He demonstrated that the ohserved motion of the planets could he explained hy assuming that there is a gravitational attraction he tween any two ohjects, a force that is proportional to the product of masses and inversely proportional to the square of the distance between them. The circular, elliptical, and parabolic orhits of astronomy were v INTRODUCTION no longer fundamental determinants of motion, but were approximations of laws specified with differential equations. His methods are now used in modeling motion and change in all areas of science. Subsequent generations of scientists extended the method of using differ ential equations to describe how physical systems evolve. But the method had a limitation. While the differential equations were sufficient to determine the behavior-in the sense that solutions of the equations did exist-it was frequently difficult to figure out what that behavior would be. It was often impossible to write down solutions in relatively simple algebraic expressions using a finite number of terms. Series solutions involving infinite sums often would not converge beyond some finite time.