Download Free Topics In The Theory Of Gibbs Semigroups Book in PDF and EPUB Free Download. You can read online Topics In The Theory Of Gibbs Semigroups and write the review.

One-parameter semigroup theory started to be an important branch of mathematics in the thirties when it was realized that the theory has direct applications to partial differential equations, random processes, infinite dimensional control theory, mathematical physics, etc. It is now generally accepted as an integral part of contemporary functional analysis. Compact strongly continuous semigroups have been an important research subject since a long time, as in almost all applications of partial differential equations with bounded domains the semigroups turn out to be compact. From this point of view, the present volume of the Leuven Notes in Mathematical and Theoretical Physics emphasizes a special subclass of these semigroups. In fact, the focus here is mainly on semigroups acting on a Hilbert space H with values in the trace class ideal C1(H) of bounded operators on H. Historically, this class of semigroups is closely related to quantum statistical mechanics.
This book focuses on the theory of the Gibbs semigroups, which originated in the 1970s and was motivated by the study of strongly continuous operator semigroups with values in the trace-class ideal. The book offers an up-to-date, exhaustive overview of the advances achieved in this theory after half a century of development. It begins with a tutorial introduction to the necessary background material, before presenting the Gibbs semigroups and then providing detailed and systematic information on the Trotter-Kato product formulae in the trace-norm topology. In addition to reviewing the state-of-art concerning the Trotter-Kato product formulae, the book extends the scope of exposition from the trace-class ideal to other ideals. Here, special attention is paid to results on semigroups in symmetrically normed ideals and in the Dixmier ideal. By examining the progress made in Gibbs semigroup theory and in extensions of the Trotter-Kato product formulae to symmetrically normed and Dixmier ideals, the book shares timely and valuable insights for readers interested in pursuing these subjects further. As such, it will appeal to researchers, undergraduate and graduate students in mathematics and mathematical physics.
An international community of experts scientists comprise the research and survey contributions in this volume which covers a broad spectrum of areas in which analysis plays a central role. Contributions discuss theory and problems in real and complex analysis, functional analysis, approximation theory, operator theory, analytic inequalities, the Radon transform, nonlinear analysis, and various applications of interdisciplinary research; some are also devoted to specific applications such as the three-body problem, finite element analysis in fluid mechanics, algorithms for difference of monotone operators, a vibrational approach to a financial problem, and more. This volume is useful to graduate students and researchers working in mathematics, physics, engineering, and economics.
The theory of semigroups of operators is one of the most important themes in modern analysis. Not only does it have great intellectual beauty, but also wide-ranging applications. In this book the author first presents the essential elements of the theory, introducing the notions of semigroup, generator and resolvent, and establishes the key theorems of Hille–Yosida and Lumer–Phillips that give conditions for a linear operator to generate a semigroup. He then presents a mixture of applications and further developments of the theory. This includes a description of how semigroups are used to solve parabolic partial differential equations, applications to Levy and Feller–Markov processes, Koopmanism in relation to dynamical systems, quantum dynamical semigroups, and applications to generalisations of the Riemann–Liouville fractional integral. Along the way the reader encounters several important ideas in modern analysis including Sobolev spaces, pseudo-differential operators and the Nash inequality.
Dedicated to Tosio Kato’s 100th birthday, this book contains research and survey papers on a broad spectrum of methods, theories, and problems in mathematics and mathematical physics. Survey papers and in-depth technical papers emphasize linear and nonlinear analysis, operator theory, partial differential equations, and functional analysis including nonlinear evolution equations, the Korteweg–de Vries equation, the Navier–Stokes equation, and perturbation theory of linear operators. The Kato inequality, the Kato type matrix limit theorem, the Howland–Kato commutator problem, the Kato-class of potentials, and the Trotter–Kato product formulae are discussed and analyzed. Graduate students, research mathematicians, and applied scientists will find that this book provides comprehensive insight into the significance of Tosio Kato’s impact to research in analysis and operator theory.
This is the first of two volumes containing peer-reviewed research and survey papers based on talks at the International Conference on Modern Analysis and Applications. The papers describe the contemporary development of subjects influenced by Mark Krein.
What is spectral action, how to compute it and what are the known examples? This book offers a guided tour through the mathematical habitat of noncommutative geometry à la Connes, deliberately unveiling the answers to these questions. After a brief preface flashing the panorama of the spectral approach, a concise primer on spectral triples is given. Chapter 2 is designed to serve as a toolkit for computations. The third chapter offers an in-depth view into the subtle links between the asymptotic expansions of traces of heat operators and meromorphic extensions of the associated spectral zeta functions. Chapter 4 studies the behaviour of the spectral action under fluctuations by gauge potentials. A subjective list of open problems in the field is spelled out in the fifth Chapter. The book concludes with an appendix including some auxiliary tools from geometry and analysis, along with examples of spectral geometries. The book serves both as a compendium for researchers in the domain of noncommutative geometry and an invitation to mathematical physicists looking for new concepts.